
Learning From Incomplete
and Inaccurate Supervision

Zhen-Yu Zhang , Peng Zhao , Yuan Jiang, and Zhi-Hua Zhou, Fellow, IEEE

Abstract—In plenty of real-life tasks, strongly supervised information is hard to obtain, and thus weakly supervised learning has drawn

considerable attention recently. This paper investigates the problem of learning from incomplete and inaccurate supervision, where

only a limited subset of training data is labeled but potentially with noise. This setting is challenging and of great importance but rarely

studied in the literature. We notice that in many applications, the limited labeled data are with certain structures, which paves us a way

to design effective methods. Specifically, we observe that labeled data are usually with one-sided noise such as the bug detection task,

where the identified buggy codes are indeed with defects, while codes checked many times or newly fixed may still have other flaws.

Furthermore, when there occurs two-sided noise in the labeled data, we exploit the class-prior information of unlabeled data, which

is typically available in practical tasks. We propose novel approaches for the incomplete and inaccurate supervision learning tasks and

effectively alleviate the negative influence of label noise with the help of a vast number of unlabeled data. Both theoretical analysis and

extensive experiments justify and validate the effectiveness of the proposed approaches.

Index Terms—Weakly supervised learning, semi-supervised learning, noisy label learning

Ç

1 INTRODUCTION

MACHINE learning has achieved great success in many
real-world tasks, especially in supervised learning sce-

narios. These techniques, such as deep learning [1], typically
require a vast number of training data with accurate labels
to obtain good performance. However, such strong supervi-
sion is not easy to obtain since the labeling process requires
human effort expertise. Therefore, it is desired to facilitate
the learning system with the capability of preserving satis-
factory performance with weak supervision [2].

In this paper, we consider the problem of learning from
incomplete and inaccurate supervision. Specifically, only a
small subset of training data is observed with labels while
the others remain unlabeled, and meanwhile, the observed
labels might be inaccurate. This setting is crucial because
it occurs in a variety of real-world applications. For
instance, consider the task of medical images annotation
in the hospital, there exist amounts of medical images
without labels, since the number of doctors is usually lim-
ited. Even for those labeled images, they could be wrongly
annotated by doctors due to their difficulties. Similar sit-
uations also occur in building the learning system from
biology data: supervised information of each molecule is
not always correct due to limitations of the equipment
capability, and the number of labeled molecules is also
limited since it is usually too costly to conduct biological
experiments for collecting labels.

Learning from incomplete supervision or inaccurate
supervision has been studied in the area of Semi-Supervised
Learning (SSL) [3], [4] and Noisy Label Learning (NLL) [5],
[6], separately. From incomplete supervision, SSL approaches
use a vast number of unlabeled data as well as the limited
labeled data to construct the model. However, when labeled
data are inaccurate, the learning system could be seriously
deceived. Under inaccurate supervision, NLL approaches
manage to recover the underlying noise-free distribution
with noisy labels, in order to learn the predictor which resists
the noise. Nevertheless, they typically require a large amount
of labeled data and cannot exploit unlabeled data. Therefore,
it is very desired to design approaches that can learn from
incomplete and inaccurate supervision simultaneously. More pre-
cisely, we need effective algorithms to handle the task where
there are only a limited number of potentially noisy labeled
data, and a vast number of unlabeled data.

The problem turns out quite challenging, and it is non-
trivial to combine advantages of SSL and NLL approaches
to address this problem. For conventional noisy label learn-
ing approaches, on the one hand, labeled data are insuffi-
cient to estimate the underlying noise-free distribution; on
the other hand, these approaches are not able to access label
information from unlabeled data, and thus cannot leverage
the incomplete supervision to alleviate the label noise. For
traditional semi-supervised learning approaches, to handle
a vast number of unlabeled data, an underlying assumption
is that supervision information should be reliable. Other-
wise, these noisy labels can significantly mislead the learn-
ing system. For example, in graph-based SSL, if labeled data
are not trustworthy, the algorithm probably converges to an
arbitrary result because the predicted labels of unlabeled
data are propagated depends on these labeled data.

With only noisy labeled data and unlabeled data, it is
almost impossible to learn from such incomplete and inac-
curate supervision, particularly when limited labeled data
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are arbitrarily corrupted. Fortunately, in many real-world
tasks, we have some certain side information on the struc-
ture of the observed labeled data. Specifically, we are con-
cerned with the circumstance where the limited labeled
data are with one-sided instance-dependent noise. Namely,
only labels in one category may flip into the other category
with an unknown, instance-dependent noise rate while the
other category is clean. Such a scenario is quite common in
real-world tasks. For example, in the bug detection task, we
aim to identify the buggy code from a large number of code
files. The codes reported with bug issues by the senior engi-
neers are surely buggy (clean label). Nevertheless, some
codes that have been check many times or fixed recently
could remain with bugs (noisy label) due to the complexity
of the software system. Moreover, plenty of codes are
not labeled since it is hard to check them one-by-one
entirely (unlabeled).

Besides the one-sided label noise, we further consider the
case where the label noise simultaneously occur on both pos-
itive and negative sides. This is evidently much more chal-
lenging than the one-sided label noise scenario, because
there is no reliable label information. To overcome the diffi-
culty caused by two-sided label noise, we exploit additional
statistical information of the incomplete supervisions for this
learning task, that is, we leverage the power of unlabeled
data with class-priors as the side statistical information.
Recall the aforementioned example of primary screening sce-
nario, when the equipment is of low quality, it may cause
misdiagnosis on both healthy and ill people, which leads to
the label noise occurring on both positive and negative sides
(two-sided noisy label). Since the data of residents (unla-
beled) usually come from different communities, our pro-
posal is to exploit some official statistics, e.g., the class-
priors, which associate with these communities as the side
information. Therefore, we can leverage unlabeled data with
side information to copewith the two-sided label noise.

This paper extends our preliminary study [7]. In this
paper, we investigate a popular but challenging learning
problem, namely, the Learning from Incomplete and Inaccurate
SuPervision (LIISP), which accommodates a variety of real-
world applications. We propose a novel semi-supervised
learning method, leveraging the incomplete supervision to
alleviate the negative effect caused by inaccurate supervi-
sion, and thus step towards learning from incomplete and
inaccurate supervision simultaneously. The main idea is to
rewrite the true risk of the underlying noise-free distribu-
tion in the importance weighting form. Enlightened by the
recent advance of positive-unlabeled learning [8], [9], [10],
we use the marginal distribution extracted from the incom-
plete supervision (unlabeled data) along with accurate
labels to estimate the weights, and thus construct the risk
minimizer for the incomplete and one-sided inaccurate
supervision. Furthermore, for the more challenging scenario
where the label noise occurs on both positive and negative
sides, we additionally exploit the class-priors of two dis-
crepant unlabeled datasets to resist the two-sided label
noise. Inspired by the unlabeled-unlabeled learning [11],
[12], we expand our method to handle the inaccurate super-
vision with the help of discrepant incomplete supervisions.
Both theoretical justifications and empirical studies demon-
strate the benefit of unlabeled data and noisy labeled data,

and thereby we can obtain the optimal convergence rate
and remarkable performance improvement.

We summarize our main contributions as follows.

1) We introduce and investigate the problem of Learn-
ing from Incomplete and Inaccurate SuPervision
(LIISP), which accommodates many real-world
applications but is rarely considered in the literature.

2) We propose novel learning algorithms, which allevi-
ate the noisy labeled data with the help of unlabeled
data. We theoretically justify the effectiveness of
unlabeled and noisy data via the excess risk analysis.

3) We conduct extensive empirical evaluations on syn-
thetic, benchmark datasets, and real-world applica-
tions to demonstrate the superiority and robustness
of our proposed methods.

In the following, we first briefly review related work in
Section 2. Then, we introduce some preliminary background
knowledge in Section 3. Next, we provide a detailed descrip-
tion of our proposed methods in Sections 4 and 5, with
detailed proofs in the supplemental material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2021.3061215.
Experimental results on synthetic, benchmark, and real-
world datasets are in Section 6. Finally, we conclude the
paper in Section 7.

2 RELATED WORK

Starting from the pioneering work of learning with noisy
labels [13], a variety of studies on inaccurate supervision
have been proposed in the theoretical community. For
instance, Aslam et al. [14] studied the learnability of noise
tolerant learning in finite VC-dimension. Apart from theo-
retical findings, various practical approaches are also pro-
posed to avoid the drawback caused by inaccurate
supervision, for example, perceptron algorithms [15], [16],
robust loss [17], [18], unbiased loss [5], [19], importance-
reweighting on training samples [20], [21], etc. Following
the line of noisy label learning, instance-independent noise
is first investigated [5], [20]. These primary studies provide
guarantees for risk minimization under random classifica-
tion noise in the general setting of convex surrogates. In
practice, instance-dependent noise [6], [22], [23] is much
closer to the realistic situation, where label noise depends
on the intrinsic nature of instances. This setting is arguably
more complicated than the instance-independent label noise
scenario. Preliminary research shows that the optimal clas-
sifiers can be recovered from the noisy distribution under
certain assumptions [6]. However, noisy label learning
mainly focuses on supervised learning field, how to deal
with limited labeled data and large amounts of unlabeled
data has not yet been well studied.

To take advantage of incomplete supervision, semi-super-
vised learning algorithms are proposed to utilize unlabeled
data alongwith limited labeleddata to construct the predictor.
Theoretical analysis shows that, provided with a reasonable
assumption on unlabeled data, like the cluster assumption or
the manifold assumption [24], [25], unlabeled data can be
used to regularize the hypothesis space and thus reduce the
searching complexity. Plenty of practical approaches have
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been proposed over the decades, e.g., graph-based meth-
ods [4], [26], S3VMs [3], and disagreement-based meth-
ods [27], [28]. In recent years, due to the powerful feature
representation ability of deep neural networks [29], some
deep-SSL approaches have also been proposed [30], [31]. In
traditional SSL, the supervision information should be accu-
rate, which usually does not hold in practice.

A different point of view in semi-supervised learning is
formulated as Positive-Unlabeled Learning (PU Learn-
ing) [8], [32]. Different fromusing unlabeled data as the regu-
larizer of hypothesis space, PU learning assumes the
unlabeled data are generated from the same joint distribu-
tion as labeled data, but their labels cannot be observed. To
deal with the semi-supervised learning task, they linearly
combine PU learning and Negative-Unlabeled Learning
(NU Learning) and give theoretical analysis [10]. Neverthe-
less, PU learning requires sufficient positive data to simulate
the effect of the negative part along with unlabeled data,
which cannot be satisfied under incomplete supervision. A
recent breakthrough in semi-supervised learning shows that
with necessary statistical information, the optimal classifier
can be obtained by two unlabeled datasets with different
class priors [11], [12]. However, they do not exploit the
labeled data, which usually contain considerably important
supervised information.

Note that disagreement-based SSL approaches also
exploit pseudo-labels of unlabeled data [28], and to handle
misleading pseudo-labels, some strategies such as data edit-
ing [33] or one-sided noisy label learning [34] have been
incorporated. These can be seen as early studies considering
both incomplete supervision and inaccurate supervision,
though the inaccurate supervision was generated during
the SSL procedure, rather than the label noise in the initial
training data. Some recent studies about Safe-SSL [35], [36],
[37] also have inherent mechanisms to handle the label
noise, though these mechanisms are implicit. In recent
years, there are some other studies [38], [39], [40], which
tried to improve the robustness of SSL, but they were mostly
heuristic and did not consider structural properties.

3 PRELIMINARY

In this section, we first review the notations for learning
from complete and accurate supervision, namely, conven-
tional supervised learning. Then, we introduce prelimi-
nary knowledge for learning from incomplete supervision,
which is one of the typical scenarios in weakly supervised
learning.

3.1 Learning from Complete and Accurate
Supervision

In this scenario, we observe the ground-truth label for each
instance. Let D be the underlying true distribution from
which the training data ðx; yÞ 2 X � Y are independently
and identically sampled, where X � Rd and Y ¼ f�1;þ1g.
Given nP positive data fðxi;þ1Þgi¼1;...;nP

and nN negative
data fðxj;�1Þgj¼1;...;nN

, our purpose is to learn a well-gener-
alized decision function g : X 7! R over the underlying dis-
tribution D for the binary classification task.

Denote by ‘ : R� Y 7! Rþ a non-negative Lipschitz-con-
tinuous loss function, whose risk over the underlying true

distribution D is

RðgÞ ¼ Eðx;yÞ�D½‘ðgðxÞ; yÞ�
¼ pPEP ½‘ðgðxÞ;þ1Þ� þ pNEN ½‘ðgðxÞ;�1Þ�; (1)

where pP is the class-prior of positive data Pr½y ¼ þ1� and
pN of negative data Pr½y ¼ �1� with pP þ pN ¼ 1. Besides,
EP and EN denote the expectation of conditional probability
Pr½xjy ¼ þ1� and Pr½xjy ¼ �1�, respectively.

As only the sampled data are accessible in practice, we
approximate the risk by the empirical one,

bRðgÞ ¼ pP

nP

XnP
i¼1

‘ðgðxiÞ;þ1Þ þ pN

nN

XnN
j¼1

‘ðgðxjÞ;�1Þ:

Given a family of decision functions G, in which each
function g : X 7! R, we denote g� as the optimal decision
function, with bg as its empirical version,

g� ¼ argmin
g2G

RðgÞ; bg ¼ argmin
g2G

bRðgÞ:
3.2 Learning from Incomplete Supervision

In this part, we consider the scenario of learning from
incomplete supervision. It is extremely hard to learn with
only unlabeled data on hand, so that we assume that we can
obtain some prior knowledge for the learning task.

Learning from Positive-Unlabeled Data. As aforementioned
in the introduction, we first consider the scenario where the
prior knowledge is a handful of data with their ground-truth
labels from one category. We assume without loss of generality
that there are nP positive data fðxi;þ1Þgi¼1;...;nP

and nU

unlabeled data fxkgk¼1;...;nU
. Our purpose is still to learn a

real-valued function g with small generalization error for
the binary classification task.

As the negative data are not available in this scenario,
thus the partial risk pNEN ½‘ðgðxÞ;�1Þ� in (1) cannot be
directly estimated. Fortunately, based on the seminal
work [8], the risk RðgÞ can be recovered in an unbiased man-
ner by only using the accurate positive (or negative) and
unlabeled data. In the following, we suppose that the loss
function ‘ satisfies the symmetric condition,

‘ðgðxÞ;þ1Þ þ ‘ðgðxÞ;�1Þ ¼ 1: (2)

The symmetric condition is met by using a scaled ramp loss
as the surrogate loss, which is classification-calibrated [9].
Based on the symmetric condition, we retrieve the partial
risk pNEN ½‘ðgðxÞ;�1Þ� by regarding the unlabeled data as
negative data, and write the risk EU ½‘ðgðxÞ;�1Þ� as

pPEP ½‘ðgðxÞ;�1Þ� þ pNEN ½‘ðgðxÞ;�1Þ�
¼ pPEP ½1� ‘ðgðxÞ;þ1Þ� þ pNEN ½‘ðgðxÞ;�1Þ�
¼ � pPEP ½‘ðgðxÞ;þ1Þ� þ pNEN ½‘ðgðxÞ;�1Þ� þ pP :

Therefore, let ‘ be a non-negative Lipschitz-continuous
loss function and satisfies the symmetric condition in (2),
then the risk can be rewritten in in unbiased manner as

RðgÞ ¼ 2pPEP ½‘ðgðxÞ;þ1Þ� þ EU ½‘ðgðxÞ;�1Þ� � pP :
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Approximating the risk RðgÞ by empirical data, we obtain,

bRPUðgÞ ¼ 2pP

nP

XnP
i¼1

‘ðgðxiÞ;þ1Þ þ 1

nU

XnU
k¼1

‘ðgðxkÞ;�1Þ: (3)

For a given family of decision functions G, we denote bgPU

as the minimizer of (3), that is,

bgPU ¼ argmin
g2G

bRPUðgÞ:

Learning from Unlabeled-Unlabeled Data. We then consider
another scenario in the incomplete supervision learning, in
which only the prior knowledge of class-priors is accessible.
We suppose that we have two discrepant unlabeled datasets
with necessary known class-priors. Let PrU1

ðx; yÞ and
PrU2

ðx; yÞ be two marginal densities where these two dis-
crepant unlabeled datasets are generated. We denote by uP
and u0P ( 6¼ uP ) the two class-priors for the positive data of
two unlabeled datasets, so that

PrU1
ðx; yÞ ¼ uP Prðxjy ¼ þ1Þ þ uN Prðxjy ¼ �1Þ;

PrU2
ðx; yÞ ¼ u0P Prðxjy ¼ þ1Þ þ u0N Prðxjy ¼ �1Þ;

where uP þ uN ¼ 1 and u0P þ u0N ¼ 1. Here Prðxjy ¼ 	1Þ are
the class conditional densities from which the positive/neg-
ative data are generated.

Since both positive and negative data are not available in
this scenario, we construct an unbiased estimation of the
underlying true risk with discrepant incomplete supervi-
sions. Following the work of [11], we rewrite RðgÞ in the
form that

RðgÞ ¼ EU1
ð�‘ðgðxÞ;þ1ÞÞ þ EU2

ð�‘ðgðxÞ;�1ÞÞ;

where EU1
and EU2

are the exception over the marginal dis-
tributions of these two discrepant unlabeled datasets,
�‘ð
;þ1Þ ¼ a‘ð
;þ1Þ þ b‘ð
;�1Þ and �‘ð
;�1Þ ¼ c‘ð
;þ1Þ þ
d‘ð
;�1Þ are the corrected loss functions for incomplete
supervisions, respectively. Then, we can write

RðgÞ ¼ EU1
½�‘U1

ðgðxÞ;þ1Þ� þ EU2
½�‘U2

ðgðxÞ;�1Þ�
¼ uPEP ½a 
 ‘ðgðxÞ;þ1Þ þ b 
 ‘ðgðxÞ;�1Þ�

þ ð1� uP ÞEN ½a 
 ‘ðgðxÞ;þ1Þ þ b 
 ‘ðgðxÞ;�1Þ�
þ u0PEP ½c 
 ‘ðgðxÞ;�1Þ þ d 
 ‘ðgðxÞ;þ1Þ�
þ ð1� u0P ÞEN ½c 
 ‘ðgðxÞ;�1Þ þ d 
 ‘ðgðxÞ;þ1Þ�

¼ ða 
 uP þ d 
 u0P ÞEP ½‘ðgðxÞ;þ1Þ�
þ ðb 
 uP þ c 
 u0P ÞEP ½‘ðgðxÞ;�1Þ�
þ ½a 
 ð1� uP Þ þ d 
 ð1� u0P Þ�EN ½‘ðgðxÞ;þ1Þ�
þ ½b 
 ð1� uP Þ þ c 
 ð1� u0P Þ�EN ½‘ðgðxÞ;�1Þ�:

By setting the coefficients of terms EP ½‘ðgðxÞ;�1Þ� and
EN ½‘ðgðxÞ;þ1Þ� to zero and letting a 
 uP þ d 
 u0P ¼ pP , b 

ð1� uP Þ þ c 
 ð1� u0P Þ ¼ pN , we immediately retrieve the
risk RðgÞ, with four coefficients

a ¼ ð1� u0P ÞpP

uP � u0P
; b ¼ � u0P ð1� pP Þ

uP � u0P
;

c ¼ uP ð1� pP Þ
uP � u0P

; d ¼ �ð1� uP ÞpP

uP � u0P
;

and RðgÞ is rewritten in an unbiased manner as

RðgÞ ¼ a 
 EU1
½‘ðgðxÞ;þ1Þ� þ a0 
 EU2

½‘ðgðxÞ;�1Þ�

� u0ð1� pP Þ þ ð1� uÞpP

u � u0
;

where a ¼ ðu0 þ pP � 2u0pP Þ=ðu � u0Þ and a0 ¼ ðu þ pP �
2upP Þ= ðu � u0Þ.

Given two discrepant unlabeled datasets of size nU1

and nU2
, the empirical estimator can be approximated by

bRUUðgÞ ¼ 1

nU1

XnU1

i¼1

a‘ðgðxiÞ;þ1Þ þ 1

nU2

XnU2

j¼1

a0‘ðgðxiÞ;�1Þ

� u0ð1� pP Þ þ ð1� uÞpP

u � u0
:

(4)

Let bgUU 2 G denote the minimizer of the risk estimated by
the two unlabeled datasets with known class-priors pP , uP
and u0P in (4), that is,bgUU ¼ argmin

g2G
bRUUðgÞ:

4 LEARNING FROM INCOMPLETE AND ONE-SIDED

INACCURATE SUPERVISION

In this section, we present our approach to leverage incom-
plete supervision to help learning with one-sided inaccurate
supervision, in particular, instances with one-sided instance-
dependent noisy labels. We demonstrate that the incomplete
supervision plays a significant role in learning from the one-
sided inaccurate supervision, especially when these noisy
labeled data are scarce.

To deal with the instances with one-sided noisy labels,
we first rewrite the risk of the underlying true distribution,
in which weights sþ and s� for each noisy labeled instance
play crucial roles. Then, we proceed to estimate these two
weights with the help of a vast number of unlabeled data.
Finally, we provide our learning algorithm for incomplete
and one-sided inaccurate supervision.

4.1 Learning fromOne-Sided Inaccurate Supervision

In the one-sided inaccurate supervision, without loss of gen-
erality, we suppose positive data are clean and negative
data are with instance-dependent label noise.

Notations and Settings. Suppose that we have n ~P clean
positive data ~P ¼ fðxi;þ1Þgi¼1;...;n ~P

1 and n ~N noisy negative
data ~N ¼ fðxj;�1Þgj¼1;...;n ~N

. For each instance x, let its true

label be y and the observed label be by. Evidently, we have
y ¼ by for clean data, while it does not hold for the noisy
data. Meanwhile, let p ~P be the class-prior of the observed
positive label Pr½by ¼ þ1� and p ~N be Pr½by ¼ �1� with
p ~P þ p ~N ¼ 1.

We suppose that the observed noisy data are with
instance-dependent label noise [6], [22]. Specifically, for any
(underlying, true) positive example x (whose true label
y ¼ þ1), it is observed as a negative example (by ¼ �1) based

1. We use ~P instead of P since there are some true positive data are
not revealed, which are observed as negative data.
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on its feature. We define this probability as the hardness, for-
mally, hP : X ! ½0; 1�, with,

hP ðxÞ ¼ Pr½by ¼ �1jx; y ¼ þ1�:

As the observed positive data are always accurate, we
have for any x 2 ~P ,

Pr½y ¼ þ1jx; by ¼ þ1� ¼ 1:

Now we are ready to retrieve the risk of underlying dis-
tribution under one-sided inaccurate supervision.

Rewrite True Risk. In the inaccurate supervision learning
scenario, if we simply treat all observed data as accurate
ones and directly adopt the risk in (1), both empirical and
theoretical performance will suffer from the label noise
heavily. In order to obtain the optimal classifier, it is neces-
sary to rewrite the true risk. In the following, we propose
the oInAS risk for the one-sided InAccurate Supervision,
and show that it provably retrieves the true risk.

Definition 1 (Risk for one-sided InAccurate Supervi-
sion (oInAS Risk)). For any function g 2 G, its oInAS risk
RIA

os ðgÞ is defined as,

RIA
os ðgÞ ¼ p ~PE ~P ½sþðxÞ 
 ‘ðgðxÞ;þ1Þ�

þ p ~NE ~N ½s�ðxÞ 
 ‘ðgðxÞ;�1Þ�;

where weights sþðxÞ and s�ðxÞ are defined as

sþðxÞ ¼ 1=Pr½by ¼ þ1jx; y ¼ þ1�;
s�ðxÞ ¼ Pr½y ¼ �1jx; by ¼ �1�: (5)

Then we show that the oInAS risk equals to the true risk
over the underlying distribution D.

Theorem 1. The oInAS risk equals to the true risk (the risk over
the true data distribution), that is,

RIA
os ðgÞ ¼ RðgÞ:

Proof. The true risk RðgÞ is the sum of pPEP ½‘ðgðxÞ;þ1Þ� and
pNEN ½‘ðgðxÞ;�1Þ�. For the expectation over the margin
distribution of negative data, we have

EN ½‘ðgðxÞ;�1Þ�

¼
Z

‘ðgðxÞ;�1ÞPr½xjby ¼ �1�Pr½xjy ¼ �1�
Pr½xjby ¼ �1� dx

¼
Z

‘ðgðxÞ;�1ÞPr½xjby ¼ �1�Pr½by ¼ �1�
Pr½y ¼ �1� s�ðxÞdx

¼ p ~N

pN
E ~N ½s�ðxÞ‘ðgðxÞ;�1Þ�:

The second equation holds due to a simple observation
that all the true negative data are essentially observed as
negative, and all observed positive data are indeed true
positive.

Therefore, we have

Pr½xjy ¼ �1�
Pr½xjby ¼ �1� ¼

Pr½by ¼ �1�
Pr½y ¼ �1� 


Pr½x; y ¼ �1�
Pr½x; by ¼ �1�

¼ Pr½by ¼ �1�
Pr½y ¼ �1� 


Pr½x; y ¼ �1; by ¼ �1� þ Pr½x; y ¼ �1; by ¼ þ1�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼0

Pr½x; by ¼ �1�
¼ Pr½by ¼ �1�

Pr½y ¼ �1� 
 s�ðxÞ:

A similar result can be obtained for the positive side by
an analogous argument. To this end, we complete the
proof of Theorem 1. tu

Remark 1. Theorem 1 justifies the usefulness of noisy nega-
tive data. Instead of discarding noisy data or regarding
them as the unlabeled data, a more efficient method
should consider the noisy negative data, since they can be
used to recover the underlying noise-free distribution,
along with clean positive data.

As the underlying distribution of the positive and the
noisy negative data is not available, we approximate the
risk by the empirical oInAS risk, defined as follows.

Definition 2 (Empirical Risk for one-sided InAccurate
Supervision, Empirical oInAS Risk). For any function
g 2 G, its empirical oInAS risk bRIA

os ðgÞ is defined as,

bRIA
os ðgÞ ¼

p ~P

n ~P

Xn ~P

i¼1

sþðxiÞ 
 ‘ðgðxiÞ;þ1Þ

þ p ~N

n ~N

Xn ~N

j¼1

s�ðxjÞ 
 ‘ðgðxjÞ;�1Þ;

where the weights sþðxÞ and s�ðxÞ are defined in (5).

Denote by bgIAos the minimizer of Empirical oInAS Risk, we
introduce the following excess risk bound, showing that the
risk of bgIAos converges to that of the optimal decision function
in the function family G.
Theorem 2 (Excess risk of learning from one-sided
inaccurate supervision). Assume that the loss function ‘ is
non-negative and L-Lipschitz continuous. With hardness
hP ðxÞ 2 ½0; h�, then, for any d > 0, with probability at least
1� d, we have

RðbgIAos Þ �Rðg�Þ � 4p ~PL

1� hP
Rn ~P

ðGÞ þ 4p ~NLRn ~N
ðGÞ

þ 2p ~P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð4=dÞ
2n ~P

s
þ 2p ~N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð4=dÞ
2n ~N

s
;

where Rn ~P
ðGÞ is Rademacher complexity of G for the sample of

size n ~P from pþ ¼ Pr½xjby ¼ þ1� andRn ~N
ðGÞ follows a similar

definition over the observed negative data. Detailed proofs are
presented in the supplemental material, available online.

Remark 2. In Theorem 2, the uniform boundedness of hard-
ness is necessary; otherwise, the excess risk can be
unbounded. When the hardness hP is very close to 1,
there exist some instances whose true labels are positive
but are regarded as negative with probability close to 1.
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As only ~P instead of the original set P is accessible, we
cannot recover the information of those extremely hard
examples.

Remark 3. When it degenerates to the instance-independent
label noise scenario, namely, there exists a constant noise
rate hP ¼ Pr½by ¼ �1jx; y ¼ þ1� ¼ Pr½by ¼ �1jy ¼ þ1�, our
algorithm recovers the importance reweighting method
proposed in [20]. Specifically, we set the instance-depen-
dent label noise as a constant, and thereby recover their
method.

4.2 Estimating sþ and s� via Incomplete
Supervision

In the oInAS risk, it is crucial to estimate the weights sþ and
s� defined in (5). A direct weighting technique for inaccu-
rate supervision is also adopted in [20], but their method
only handles instance-independent label noise and is not
able to utilize unlabeled data. However, in the semi-super-
vised learning scenario, labeled data are limited, while unla-
beled data are comparatively sufficient. It is very desired to
exploit unlabeled data when we only have scarce noisy
labeled data on hand. In this paragraph, we estimate the
weights sþ=� with the help of incomplete supervision.

As shown in [9], positive-unlabeled learning is provably
better than supervised learning in terms of risk bounds
when infinite unlabeled data are available. Therefore, pro-
vided with sufficient unlabeled data, the classifier learned
from positive and unlabeled data also has a good capability
in estimating the underlying noise-free distribution. Conse-
quently, we employ bgPU , the minimizer of empirical PU risk
in (3), to produce pseudo labels for the noisy negative data
and unlabeled data, which are used to estimate the weights
sþ=�.

Estimating Weights sþ=�. First, we rewrite the weights
sþðxÞ and s�ðxÞ defined in (5) as follows,

sþðxÞ ¼ Pr½x; y ¼ þ1�
Pr½x; y ¼ þ1; by ¼ þ1� þ Pr½x; y ¼ �1; by ¼ þ1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

¼ pP Pr½xjy ¼ þ1�
p ~P Pr½xjby ¼ þ1� ¼

pP

p ~P

s0
þðxÞ;

s�ðxÞ ¼ Pr½x; y ¼ �1; by ¼ �1� þ Pr½x; y ¼ �1; by ¼ þ1�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼0

Pr½x; by ¼ �1�
¼ pN Pr½xjy ¼ �1�

p ~N Pr½xjby ¼ �1� ¼
pN

p ~N

s0
�ðxÞ;

where p ~P= ~N and pP=N are class-priors of (noisy) positive/
negative data and s0

þ=�ðxÞ denote the remaining density
ratio terms, which are defined as

s0
þðxÞ ¼ Pr½xjy ¼ þ1�=Pr½xjby ¼ þ1�;

s0
�ðxÞ ¼ Pr½xjy ¼ �1�=Pr½xjby ¼ �1�:

In the following, we provide the estimation procedure of
sþðxÞ, and the estimator of s�ðxÞ can be similarly obtained.
Based on the law of large numbers, pP and p ~P can be esti-
mated by the ratio of the number of samples as

bpP ¼ nyPU¼þ1

n ~P þ n ~N

; bp ~P ¼
nby¼þ1

n ~P þ n ~N

;

in which nyPU¼þ1 denotes the number of positive data esti-
mated by empirical PU classifier bgPU while nby¼þ1

denotes
the number of observed positive data.

Then, in the incomplete and one-sided inaccurate super-
vision learning scenario, we estimate ratio s0

þ with the help
of the learned classifier bgPU over unlabeled data. We mea-
sure the discrepancy between estimated ratio and the true
ratio by the Bregman divergence, defined as follows.

Definition 3 (Bregman divergence of ratio models [41]).
Assume that the function f : R 7! R is differentiable and
strictly convex. Let rfðxÞ denote the subgradient of fðxÞ, the
Bregman divergence associated with f from the true density
ratio s0

þ to the estimated ratio bs0
þ is defined as,

Bfðs0
þkbs0

þÞ ¼
Z

Pr½xjby ¼ þ1�rfðbs0
þðxÞÞbs0

þðxÞdx

�
Z

Pr½xjby ¼ þ1�fðbs0
þðxÞÞdx

�
Z

Pr½xjy ¼ þ1�rfðbs0
þðxÞÞdx:

Denote by PPU ¼ fðxi; bgPUðxiÞ ¼ þ1Þgi¼1;...;m the set of
instances that are labeled as þ1 by bgPU of size m, which
approximates the sampled instances generated fromPr½xjy ¼
1�. As ~P is directly sampled from Pr½xjby ¼ 1�, we estimate the

empirical Bregman divergence bBPU
f ðs0

þkbs0
þÞ of estimated

ratio and the true ratio by

bBPU
f ðs0

þkbs0
þÞ ¼

1

n ~P

Xn ~P

i¼1

rfðbs0
þðxiÞÞbs0

þðxiÞ

� 1

n ~P

Xn ~P

i¼1

fðbs0
þðxiÞÞ �

1

m

Xm
j¼1

rfðbs0
þðxjÞÞ:

Therefore, provided with two sets of instances sampled
from the observed positive data and the pseudo positive
data, namely ~P and PPU , we are able to approximate the
true density ratio by minimizing the empirical Bregman
divergence. We denote by bs0PU

þ the minimizer of the empiri-
cal Bregman divergence of function family fbs0

þg, that is,

bs0PU
þ ¼ argminbs0þ2fbs0þg

bBPU
f ðs0

þðxÞkbs0
þðxÞÞ:

We provide the following bound to show that the esti-
mated ratio converges to the optimal density ratio in the
function family fbs0

þg.
Theorem 3. Assume that s0

þðxÞ is bounded. Then, for any d >
0, the following bound holds with probability at least 1� d,

Bfðs0
þkbs0PU

þ Þ � 2CRðfbs0
þgÞ þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð4=dÞ
2n ~P

s
;

where Rðfbs0
þgÞ is the Rademacher complexity of ratio model

set, in the order of Oð1= ffiffiffiffiffiffi
n ~P

p Þ; C and b are constants. Detailed
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proofs are provided in the supplemental material, available
online.

Theorem 3 guarantees that our estimated weights sþ=�
converge to the optimal one in the hypothesis space, in the
order of Oð1= ffiffiffiffiffiffi

n ~P
p Þ. This analysis accords to the intuition

that the estimator will be more accurate with more clean
positive data available.

4.3 Our Approach

In order to learn from incomplete and one-sided inaccurate
supervision, we minimize the weighted combination of
oInAS risk and PU risk (which we denoted by RIC

os ðgÞ),

gRIA
os ðgÞ þ ð1� gÞRIC

os ðgÞ
¼gp ~PE ~P ½sþðxÞ‘ðgðxÞ;þ1Þ� þ gp ~NE ~N ½s�ðxÞ‘ðgðxÞ;�1Þ�
þ 2ð1� gÞpPEP ½‘ðgðxÞ;þ1Þ� þ ð1� gÞEU ½‘ðgðxÞ;�1Þ�;

where g 2 ½0; 1� is the trade-off coefficient. As the classifierbgPU is required to provide pseudo-labels for negative and
unlabeled data, we split the positive data ~P into two disjoint
sets ~P1 and ~P2 of size n ~P1

and n ~P2
, which are respectively

adopted in the (empirical) oInAS and PU risk,

bRosðgÞ ¼ gbp ~P

n ~P1

Xn ~P1

i¼1

sþðxiÞ‘ðgðxiÞ;þ1Þ þ gbp ~N

n ~N

Xn ~N

j¼1

s�ðxjÞ‘ðgðxjÞ;�1Þ

þ 2ð1� gÞbpP

n ~P2

Xn ~P2

i¼1

‘ðgðxiÞ;þ1Þ þ ð1� gÞ
nU

XnU
k¼1

‘ðgðxkÞ;�1Þ:

(6)

Denote by bgos the minimizer of empirical risk of incom-
plete and one-sided inaccurate supervision in (6). For the
learned decision function, we have the following excess risk
bound, demonstrating that the risk of bgos converges to that
of optimal decision function in G.
Corollary 1 (Excess Risk of LIISP(os)). Assume that the

loss function ‘ is bounded, non-negative and L-Lipschitz con-
tinuous. Suppose the hardness hP ðxÞ � h holds uniformly for
each instance, and there is a constant CG > 0 such that
RnðGÞ � CG=

ffiffiffi
n

p
for positive/noisy negative and unlabeled

data (with n ¼ n ~P=n ~N=nUÞ. Then for any d > 0, with proba-
bility at least 1� d, we have

RðbgosÞ �Rðg�Þ � Oð1= ffiffiffiffiffiffi
n ~P

p þ 1=
ffiffiffiffiffiffiffi
n ~N

p þ 1=
ffiffiffiffiffiffi
nU

p Þ:

Remark 4. Corollary 1 implies the usefulness of leveraging
unlabeled data to alleviate the instance-dependent label
noise. As we can see, the risk bound is tighter with an
increasing number of unlabeled data. The above risk
bound is in optimal convergence rate without any addi-
tional assumption [42].

5 LEARNING FROM INCOMPLETE AND INACCURATE
SUPERVISION WITH CLASS-PRIORS

In real-world applications, both positive and negative data
could be polluted by the instance-dependent label noise. In
such a learning scenario, it is extremely hard to retrieve the

underly true risk and design an algorithm with theoretical
guarantee since there are no reliable label information.
Therefore, we proactively collect additional class-prior
information of the unlabeled data, namely, we have two
discrepant unlabeled datasets with all necessarily known
class-priors. We demonstrate that these discrepant incom-
plete supervisions could help to resist the two-sided label
noise.

To deal with the two-sided noisy labels, we also
rewrite the expect risk in the importance weighting form,
and then estimate these weights with the help of the dis-
crepant unlabeled datasets. Finally, we provide our learn-
ing algorithm for incomplete and inaccurate supervision
with class-priors.

5.1 Learning from Inaccurate Supervision With
Class-Priors

Notations and Settings. Throughout this section, we assume
that we have n ~P noisy positive data which is denoted by
~P ¼ fðxi;þ1Þgi¼1;...;n ~P

and n ~N noisy negative data denoted
by ~N ¼ fðxj;�1Þgj¼1;...;n ~N

. Let p ~P be the class-prior of the
observed positive labels Pr½by ¼ þ1� and p ~N be the one of
observed negative labels Pr½by ¼ �1� with p ~P þ p ~N ¼ 1. We
denote by pP and pN the class-priors of underlying true
data, which are known ahead in this scenario.

As previously assumed, we suppose that the observed
data are with instance-dependent label noise. Following the
definition of hP , we define the hardness hN on underlying
true negative data, formally, hN : X 7! ½0; 1�, with,

hNðxÞ ¼ Pr½by ¼ þ1jx; y ¼ �1�:

Rewrite True Risk. When both positive and negative data are
with instance-dependent noisy labels, we propose the InAS
Risk for the InAccurate Supervision, and show that it is
provably equal to the underlying true risk.

Definition 4 (Risk for InAccurate Supervision (InAS
Risk)). For any function g 2 G, given the class-priors pP and
pN , its InAS risk RIA

ts ðgÞ is defined as,

RIA
ts ðgÞ ¼ pPE ~P s0

þðxÞ‘ðgðxÞ;þ1Þ� �
þ pNE ~N s0

�ðxÞ‘ðgðxÞ;�1Þ� �
;

where weights s0
þðxÞ and s0

�ðxÞ are defined as

s0
þðxÞ ¼ Pr½xjy ¼ þ1�=Pr½xjby ¼ þ1�;

s0
�ðxÞ ¼ Pr½xjy ¼ �1�=Pr½xjby ¼ �1�: (7)

Then, we demonstrate that the InAS risk equals to the
true risk over the underlying distribution D.

Theorem 4. The InAS risk equals to the true risk (the risk over
the true data distribution), that is,

RIA
ts ðgÞ ¼ RðgÞ:

Proof. For the expectation over the marginal distribution of
the clean positive data, we rewrite it as
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EP ‘ðgðxÞ;þ1Þ½ �
¼

Z
‘ðgðxÞ;þ1ÞPr½xjy ¼ þ1�dx

¼
Z

‘ðgðxÞ;þ1ÞPr½xjby ¼ þ1�Pr½xjy ¼ þ1�
Pr½xjby ¼ þ1� dx

¼ E ~P s0
þðxÞ‘ðgðxÞ;þ1Þ� �

:

While for the negative data, a similar result can be
obtained by an analogous argument. tu

Remark 5. Theorem 4 demonstrates that the true risk can be
retrieved by assigning proper weights to each noisy
instance. Therefore, a well-generalized classifier can be
obtained by estimating these weights and then minimizing
the weighted empirical risk. However, as defined in (7), we
should approximate the underlying true conditional distri-
bution like the Pr½xjy ¼ þ1�. There is no hope to learn a
good estimation for these weights when the noisy data are
scarce and occur arbitrarily. This observation motivates us
to handle this taskwith the help of unlabeled data, which is
oftenwith a large amount and rather easy to obtain.

As we only have the sampled data, we approximate the
true risk by the empirical InAS risk, which is defined as

Definition 5 (Empirical Risk for InAccurate Supervi-
sion, Empirical InAS Risk). For any function g 2 G, its
empirical InAS risk bRIA

ts ðgÞ is defined as

bRIA
ts ðgÞ ¼

pP

n ~P

Xn ~P

i¼1

s0
þðxiÞ 
 ‘ðgðxiÞ;þ1Þ

þ pN

n ~N

Xn ~N

j¼1

s0
�ðxjÞ 
 ‘ðgðxjÞ;�1Þ;

where the weights s0
þðxÞ and s0

�ðxÞ are defined in (7).

Denote by bgIAts the minimizer of above empirical InAS
risk, we then show that this obtained classifier enjoys the
following excess risk bound.

Theorem 5 (Risk of learning from Inaccurate Supervi-
sion). Assume that the loss function ‘ is non-negative and
L-Lipschitz continuous. Suppose that the hardness hP ðxÞ 2
½0; hP � and hNðxÞ 2 ½0; hN �, for any d > 0, with probability at
least 1� d, we have

RðbgIAts Þ �Rðg�Þ � 4pPL

1� hP
Rn ~P

ðGÞ þ 4pNL

1� hN
Rn ~N

ðGÞ

þ 2pP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð4=dÞ
2n ~P

s
þ 2pN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð4=dÞ
2n ~N

s
;

where Rn ~P
ðGÞ is Rademacher complexity of function family G

for the sampling of size n ~P from Pr½xjby ¼ þ1� andRn ~N
ðGÞ fol-

lows a similar definition. Detailed proofs are presented in the
supplemental material, available online.

5.2 Estimating s0
þ and s0

� by Discrepant Incomplete
Supervisions

We proceed to estimate the weights s0
þ and s0

� defined in (7)
with the help of incomplete supervisions. As shown in [11],
the risk of underlying true distribution can be retrieved by

discrepant unlabeled datasets, when their corresponding
class-priors uP and u0P and the class-prior pP of the joint
unlabeled datasets are known in advance. Therefore, with
sufficient unlabeled data on hand, the classifier learned
from the discrepant unlabeled datasets is valuable in esti-
mating the underlying noise-free distribution. Accordingly,
we employ bgUU , the minimizer of empirical UU risk in (4), to
produce pseudo labels, which are then used to estimate the
weights s0

þ=�ðxÞ. In the following, we propose the estima-
tion of s0

þðxÞ, while s0
�ðxÞ can be similarly obtained.

Estimating Weights s0
þ=�. Again we adopt the ratio match-

ingmethod proposed in [41] to estimate weights for observed
labeled data. Let PUU ¼ fðxi; bgUUðxiÞ ¼ þ1Þgi¼1;...;nUþ be the
set of instances labeled as þ1 by bgUU of size nUþ in training
data, which used to approximate the instances sampled from
Pr½xjy ¼ 1�. We approximate the Bregman divergence
between estimated ratio and the true ratio by the empirical
one, namely,

bBUU
f ðs0

þkbs0
þÞ ¼

1

n ~P

Xn ~P

i¼1

rfðbs0
þðxiÞÞbs0

þðxiÞ

� 1

n ~P

Xn ~P

i¼1

fðbs0
þðxiÞÞ �

1

nUþ

XnUþ

j¼1

rfðbs0
þðxjÞÞ:

With two sets of instances sampled from the observed
positive data and the pseudo positive data, namely ~P and
PUU , we are able to approximate the true density ratio by
minimizing the empirical Bregman divergence. Let bs0UU

þ be
the minimizer of the above empirical Bregman divergence,
we provide the following bound to show that the estimated
ratio converges to the optimal one in fbs0

þg.
Theorem 6. Assume that s0

þðxÞ is bounded. Let n ¼
minfn ~P ; n ~N; nU1

; nU2
g, for any d > 0, the following bound

holds with probability at least 1� d,

Bfðs0
þkbs0UU

þ Þ � 2CRðfbs0
þgÞ þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð4=dÞ

2n

r
;

where Rðfbs0
þgÞ is the Rademacher complexity of ratio model

set, in the order of Oð1= ffiffiffi
n

p Þ; C and b are constants. Detailed
proofs are provided in the supplemental material, available
online.

Theorem 6 guarantees that our estimated weights s0
þ=�

converge to the optimal one in the hypothesis space, in
the order of Oð1= ffiffiffi

n
p Þ. This analysis accords to the intuition

that the estimator will be more accurate with more data
available.

5.3 Our Approach

To exploit noisy data and unlabeled data simultaneously,
we introduce the weighted combination of the InAS risk
and the UU risk (which we denoted by RIC

ts ðgÞ), to learn
from the incomplete and inaccurate supervision with class-
priors, namely,

gRIA
ts ðgÞ þ ð1� gÞRIC

ts ðgÞ
¼ gðpPE ~P ½s0

þðxÞ‘ðgðxÞ;þ1Þ� þ pNE ~N ½s0
�ðxÞ‘ðgðxÞ;�1Þ�Þ

þ ð1� gÞðEU1
½�‘U1

ðgðxÞ;þ1Þ� þ EU2
½�‘U2

ðgðxÞ;�1Þ�Þ;

ZHANG ETAL.: LEARNING FROM INCOMPLETE AND INACCURATE SUPERVISION 5861

Authorized licensed use limited to: Nanjing University. Downloaded on March 14,2023 at 03:08:32 UTC from IEEE Xplore.  Restrictions apply. 



where g 2 ½0; 1� is the trade-off coefficient. The empirical
version bRcpðgÞ is defined as

bRcpðgÞ ¼ g bRIA
ts ðgÞ þ ð1� gÞ bRUUðgÞ

¼ gpP

n ~P

Xn ~P

i¼1

s0
þðxiÞ‘ðgðxiÞ;þ1Þ þ gpN

n ~N

Xn ~N

j¼1

s0
�ðxjÞ‘ðgðxjÞ;�1Þ

þ 1� g

nU1

XnU1

i¼1

a‘ðgðxiÞ;þ1Þ þ 1� g

nU2

XnU2

j¼1

a0‘ðgðxiÞ;�1Þ;

where a ¼ ðu0 þ pP � 2u0pP Þ=ðu � u0Þ and a0 ¼ ðu þ pP �
2upP Þ= ðu � u0Þ.

Let bgcp be the minimizer of the weighted combination riskbRcpðgÞ in the function family G, we have the following excess
risk bound, demonstrating that the risk of bgcp converges to
that of optimal decision function in G.
Corollary 2 (Excess Risk of LIISP(cp)). Assume that the

bounded loss function ‘ is non-negative and L-Lipschitz con-
tinuous. Suppose the hardness hP ðxÞ; hNðxÞ � h holds uni-
formly for each instance, and there is a constant CG > 0 such
thatRnðGÞ � CG=

ffiffiffi
n

p
for positive/noisy negative and unlabeled

data (with n ¼ n ~P=n ~N=nUÞ. Then for any d > 0, with proba-
bility at least 1� d, we have

RðbgcpÞ �Rðg�Þ � Oð1= ffiffiffiffiffiffi
n ~P

p þ 1=
ffiffiffiffiffiffiffi
n ~N

p þ 1=
ffiffiffiffiffiffi
nU

p Þ:

6 EXPERIMENT

In this section, we examine the performance of the proposed
LIISP(os) and LIISP(cp) algorithms on both benchmark
datasets and real-world tasks. Specifically, we evaluate our
algorithms in the following three aspects:

i) Comparisons on Synthetic Datasets: we provide intui-
tive illustrations on the advantage of our approaches
against traditional algorithms designed for only
incomplete or only inaccurate supervision;

ii) Comparisons on Benchmark Datasets: we compare the
LIISP algorithms with robust SSL methods on bench-
mark datasets, to demonstrate the superiority of the
LIISP algorithms in exploiting incomplete and inac-
curate supervision, and the usefulness of noisy
labeled data and the unlabeled data;

iii) Bug Detection Task: we validate the effectiveness of
the LIISP(os) algorithm on the bug detection task,
which aims at detecting defects in software systems.

In order to simulate the instance-dependent label noise, we
first pre-train a SVM classifier on clean data and flip 20 per-
cent positive data into negative according to their confi-
dence. For the LIISP(cp) algorithm, we additionally flip 20
percent negative data into positive to imitate the two-sided
label noise. We perform experiments 10 times on various
splits of datasets, and present the average as well as the
standard deviation of the results. We also conduct 10-fold
cross validation to choose a proper trade-off coefficient g.

6.1 Comparisons on Synthetic Datasets

We first numerically illustrate the effectiveness of the LIISP
algorithms under incomplete and inaccurate supervision.
We first generate a synthetic dataset as underlying true dis-
tribution from two class-conditional distributions, with each
instance ðx; yÞ generated from standard two-dimensional
Normal distributionN x according to

Pr½xjy ¼ �1� ¼ N xð½�1;�1�Þ;Pr½xjy ¼ 1� ¼ N xð½1; 1�Þ:

Then we generate the instance-dependent label noise
according to their confidence assigned by a pre-trained
SVM model. In the synthetic comparisons, we generate 200
noisy labeled data. Apart from the noisy data, we also pro-
vide 1,000 unlabeled data as incomplete supervision. The
optimal boundary is shown in the solid black line. The NLL
method denotes the one that learning only with noisy
labeled data, and here we apply a robust SVM [43]. Simi-
larly, the SSL approach denotes the method that learning
with unlabeled data, and we apply the PNU algorithm [10]
for comparison.

We report the boundaries as well as the error bounds
returned by the LIISP, NLL, SSL algorithms in Fig. 1. Both
the NLL and SSL approaches suffer from the scare noisy
labeled data. The green area in Fig. 1a denotes the boundary
and the error bound of the LIISP(os) algorithm, which is
closest to the optimal boundary. A similar result can be
obtained for the LIISP(cp) algorithm, which is shown in
Fig. 1b. To conclude, our proposed LIISP(os/cp) algorithms
could empirically approximate the optimal boundaries
under incomplete and inaccurate supervision.

6.2 Comparisons on Benchmark Datasets

In this part, we examine the performance of the LIISP(os/
cp) algorithms on benchmark datasets and test the useful-
ness of both noisy labeled data and unlabeled data. We

Fig. 1. Comparisons with Noisy Label Learning (NLL) algorithm and Semi-Supervised Learning (SSL) algorithm on the synthetic dataset generated
by two-dimensional Normal distributions with instance-dependent label noise.
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notice that the LIISP(os) algorithm and LIISP(cp) algorithm
deal with different learning scenarios, thus they are not
directly comparable. We conduct the benchmark compari-
sons on the UCI datasets2 and the LIBSVM datasets,3 includ-
ing diabetes, breastw, wdbc, house, letter7vs9, ionosphere,
australian, isolet, german, a5a, clean1, mnist7vs9, autavn
and rcv1 from various fields. The number of data items
varies from 232 to 20,242 and their dimension varies from 8
to 47,236. We summarize their brief statistical information
in Table 1.

We compare the proposed LIISP(os/cp) algorithms with
six contenders, including two supervised learning methods
and four semi-supervised learning algorithms. The two
supervised learning baselines:

� LIBSVM [44] is an SVM baseline.
� IW [20] is a noisy label learning approach which

resist the label noise by importance reweighting
technique.

There are other four robust semi-supervised learning algo-
rithms, which consider the noisy labels in SSL,

� LSSC [38] is a sparse coding based SSL method. It
gives a L1-norm formulation of Laplacian regulariza-
tion based on the manifold structure of the data.

� ROSSEL [39] generates a set of pseudo labels for
unlabeled data, and approximates the ground-truth
labels by multiple label kernel learning.

� SIIS [40] is a graph-based SSL algorithm. It empha-
sizes the leading eigenvectors of the Laplacian
matrix associated with small eigenvalues, such that
this method constructs a label noise robust graph
and propagates labels on this graph.

� SAFEW [45] builds the final prediction results by
integrating several weakly supervised learners on
noisy labeled data and makes it never worse than a
simple supervised learning baseline.

In addition, we also include the following two methods
into comparisons, which are direct combinations of the NLL
and SSL approaches, in order to demonstrate the superiority
of our algorithm to these naive combinations.

� PUIW is a direct combination of PU learning and IW,
which first adopts PU learning to generate pseudo

labels for unlabeled data, and then applies IW on
labeled data to alleviate the effect of noisy labels.

� UUIW is a straightforward combination of UU
learning and IW, whose procedures are similar to
PUIW by first using UU learning to generate
pseudo labels for unlabeled data and then apply-
ing IW method.

Table 2 shows that the LIISP(os/cp) algorithms solve the
LIISP tasks and outperform other contenders. In the one-
sided label noise scenario, LIISP(os) ranks first in 10 out of
14 datasets in terms of the average accuracy. Overall, the
LIISP(os) algorithm outperforms both supervised baselines
and robust SSL methods. Compared to the conventional
noisy label learning methods (LIBSVM and IW), LIISP(os)
achieves higher accuracy and better stability. As shown in
Table 2a, although the IW reweights the noisy label, it is not
always better than the LIBSVM baseline. Besides its decline
in the average accuracy, the large variance makes it hard to
be practical. Such a phenomenon indicates the instability
caused by the limited noisy labeled data, and thereby it is
essential to utilize the unlabeled data.

Compared with the robust semi-supervised learning
approaches, the LIISP(os) algorithm achieves a very promis-
ing performance, as it explores the structure of noisy labeled
data. Notably, the LIISP(os) algorithm outperforms the
ROSSEL approaches, which heavily rely on the performance
of the weak learner(s) generated from noisy labeled data.
This phenomenon also validates the effectiveness of our
approach in utilizing unlabeled data. Compared with the
naive combination of PU and IW approaches (PUIW), the
LIISP(os) algorithm attains higher accuracy on almost all
datasets, which demonstrates that a direct combination of
NLL and SSL approaches is not applicable in practice.

In the two-sided label noise scenario, the LIISP(cp) algo-
rithm also outperforms both the supervised baselines and
robust SSL methods, which is shown in Table 2b. The LIISP
(cp) algorithm achieves higher accuracy and lower variance
compared with two supervised learning baselines on 14
datasets, which demonstrates the benefit of utilizing unla-
beled data. We additionally exploit the statistical informa-
tion (class priors) of the discrepant unlabeled data, so that
we can solve the LIISP task with theoretical guarantees.
Therefore, it is not surprising that the LIISP(cp) algorithm
outperforms the other four robust SSL approaches. Further-
more, the LIISP(cp) also shows superiority over the direct
combination of the NLL and SSL methods, namely the
UUIW, which verifies the advantage of the proposed LIISP
(cp) algorithm.

Comparison with Incomplete Supervision Algorithms. We
then implement the LIISP(os/cp) algorithms with deep neu-
ral networks and demonstrate their effectiveness. In this
part, we focus on validating the usefulness of noisy labeled
data. In the following, we empirically compare our pro-
posed algorithms with deep semi-supervised learning
approaches (for incomplete supervision) on two real-world
datasets.

� MNIST [46] is a large handwritten digits dataset with
a training set of 60,000 examples, and a test set of
10,000 examples. These handwritten digits vary from
0 to 9 and we set the even and odd digits as the

TABLE 1
Brief Statistics of Benchmark Datasets

Dataset # Instance # Dim Dataset # Instance # Dim

diabetes 768 8 isolet 600 51
breastw 683 9 german 1,000 59
wdbc 569 14 a5a 6,414 122
house 232 16 clean1 476 166
letter7vs9 1,528 16 mnist7vs9 14,251 784
ionosphere 351 33 autavn 7,118 20,707
australian 690 42 rcv1 20,242 47,236

2. The UCI datasets can be downloaded from https://archive.ics.
uci.edu/ml/datasets.php with detailed description for each dataset.

3. The LIBSVM datasets can be downloaded from https://www.
csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/ with detailed descrip-
tion for each dataset.
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positive class and negative class, thus construct the
binary classification task.

� SVHN [47] is a house number dataset obtained from
Google Street View images. It contains 10 classes
from 0 to 9 and we also set the even and odd digits
as the positive class and negative class, respectively.

For the MNIST dataset, we apply a 6-layer multilayer per-
ceptron (MLP) with ReLU [48] as activation functions (more
specifically, d-300-300-300-300-1, where d is the dimension of
training data, 300 is width of the layer). Batch normaliza-
tion [49] is applied after each fully connected layer. For the
SVHN dataset, we apply an pre-trained deep residual net-
work ResNet-18 [50] to generate features and then use a fully
connected layer to make the prediction.4 The architecture of
ResNet-18 is: ð224� 224� 3Þ-Cð7� 7; 64Þ-max pool-½Cð3�
3; 64Þ� � 2-½Cð3� 3; 128Þ� � 2-½Cð3� 3; 256Þ� � 2-½Cð3� 3;
512Þ� � 2-average pool-1000-1, where ð224� 224� 3Þ is the
input RGB data with 3 channels, Cð3� 3; 64Þ means 64 chan-
nels of 3� 3 convolutions followed by ReLU, ½
� � 2 means

there are two such layers, etc. The down sampling of the vol-
ume though the network is achieved by increasing the stride
from 1 to 2. These two models are trained by Adam [51] with
a learning rate of 10�4 and regularization weight decay 0.005.
Table 3 summarizes brief statistics of datasets and used
models.

We compare the LIISP(os/cp) algorithms with deep
semi-supervised learning approaches. For the one-sided
label noise, since noisy data only appear in one category,
Positive-Unlabeled (PU) learning [52] can be directly
applied by discarding the noisy data. While for the two-
sided label noise, as we additionally collect the class-prior
information of the discrepant unlabeled datasets, we could
use the Unlabeled-Unlabeled (UU) learning [11] to obtain

TABLE 2
Performance Comparisons on Benchmark Datasets

(a) Learning from incomplete and one-sided inaccurate supervision

Dataset LIBSVM IW LSSC ROSSEL SIIS SAFEW PUIW LIISP(OS)

diabetes 74.91 	 1.50 � 60.79 	 8.81 � 68.45 	 2.35 � 75.69 	 2.48 67.92 	 1.37 � 67.69 	 0.90 � 75.93 	 2.35 76.26 	 1.03

breastw 93.65 	 1.98 94.71 	 1.23 96.21 	 1.29 96.53 	 0.83 96.49 	 0.68 96.31 	 0.49 95.53 	 1.52 94.85 	 4.32
wdbc 89.65 	 2.75 � 77.47 	 19.3 � 91.97 	 2.01 � 90.87 	 2.07 � 92.95 	 1.32 � 86.46 	 1.14 � 77.64 	 12.1 � 95.52 	 1.08

house 91.90 	 1.72 � 96.29 	 1.27 93.49 	 2.17 � 93.26 	 1.88 � 88.84 	 2.70 � 95.47 	 1.59 94.53 	 2.80 96.03 	 0.97
letter7vs9 90.04 	 3.88 � 95.21 	 1.72 � 94.23 	 0.88 � 94.94 	 1.43 � 78.47 	 1.39 � 93.97 	 0.90 � 95.04 	 1.34 � 98.82 	 0.95
ionosphere 81.54 	 3.19 � 83.28 	 6.51 � 79.26 	 6.88 � 88.23 	 4.64 72.11 	 16.6 � 81.31 	 3.92 � 85.69 	 2.56 90.23 	 7.43

australian 80.20 	 3.24 � 80.65 	 12.9 81.87 	 2.81 � 79.89 	 6.92 � 72.96 	 3.50 � 71.77 	 7.89 � 84.47 	 3.90 86.19 	 1.05

isolet 86.50 	 2.16 � 91.63 	 2.44 � 96.48 	 1.25 80.13 	 2.06 � 98.82 	 0.48 96.16 	 2.00 91.74 	 2.38 � 98.61 	 1.21
german 64.52 	 3.89 � 67.45 	 4.81 � 62.53 	 1.86 � 73.03 	 0.96 72.24 	 1.19 72.73 	 0.68 68.65 	 2.21 � 74.37 	 2.58
a5a 70.91 	 2.42 � 73.82 	 4.35 � 68.45 	 1.69 � 79.36 	 1.66 � 76.36 	 0.82 � 78.20 	 1.58 74.13 	 2.47 � 83.29 	 0.47

clean1 72.84 	 3.81 � 64.52 	 4.15 � 61.03 	 1.00 � 77.40 	 2.37 � 60.89 	 5.98 � 69.11 	 1.38 � 71.07 	 3.92 � 86.16 	 3.42

mnist7vs9 85.63 	 2.29 � 90.18 	 1.62 � 88.76 	 1.43 � 81.41 	 1.18 � 92.46 	 1.73 85.10 	 7.08 � 91.82 	 1.53 � 96.19 	 0.33

autavn 65.46 	 0.82 � 65.59 	 6.33 � 76.54 	 7.68 69.54 	 0.82 � 65.75 	 2.20 � 72.76 	 0.21 68.90 	 1.57 � 77.72 	 4.56
rcv1 62.57 	 3.79 � 61.52 	 1.20 � 70.92 	 5.55 68.72 	 3.59 62.42 	 0.64 � 70.15 	 0.88 67.33 	 2.51 69.93 	 2.52

LIISP(os) w/ t/ l 13/ 1/ 0 12/ 1/ 1 11/ 1/ 2 10/ 3/ 1 11/ 1/ 2 11/ 1/ 2 10/ 3/ 1 rank first 10/ 14

(b) Learning from incomplete and inaccurate supervision with class-priors

Dataset LIBSVM IW LSSC ROSSEL SIIS SAFEW UUIW LIISP(CP)

diabetes 70.55 	 2.17 60.21 	 12.7 � 67.37 	 2.88 � 70.58 	 1.89 60.64 	 10.9 � 69.26 	 6.25 � 66.17 	 12.8 � 72.70 	 4.20

breastw 94.93 	 0.77 88.45 	 12.1 � 95.21 	 1.04 96.62 	 0.69 96.80 	 4.60 � 96.29 	 0.52 93.22 	 3.09 95.18 	 0.57
wdbc 88.03 	 4.45 � 71.37 	 14.0 � 90.51 	 3.51 93.41 	 0.81 94.44 	 1.05 � 87.95 	 4.27 69.69 	 14.9 � 91.93 	 1.47
house 92.84 	 3.91 89.25 	 15.0 � 90.73 	 1.47 � 93.26 	 2.62 89.65 	 2.48 � 92.56 	 2.86 90.93 	 3.33 94.49 	 1.99

letter7vs9 90.72	 3.91 � 81.78 	 20.3 � 92.31 	 2.40 � 95.16 	 1.87 77.45 	 1.68 � 94.40 	 1.09 85.98 	 10.7 � 95.18 	 3.60

ionosphere 78.01 	 3.19 � 74.39 	 9.34 � 79.49 	 4.65 � 88.94 	 2.81 81.82 	 7.17 � 77.40 	 7.90 � 72.98 	 10.2 � 90.31 	 4.17
australian 76.38 	 4.21 � 66.22 	 16.1 � 79.45 	 2.81 � 81.53 	 2.62 � 73.96 	 5.18 � 83.43 	 3.08 72.41 	 9.91 � 83.99 	 1.85

isolet 73.93 	 0.59 � 85.83 	 2.33 � 94.82 	 0.73 88.47 	 2.24 � 98.84 	 0.33 � 97.37 	 1.03 73.92 	 18.7 � 95.35 	 1.76
german 58.33 	 2.30 � 59.83 	 8.74 � 61.31 	 2.28 � 60.24 	 3.58 � 60.06 	 10.8 � 63.43 	 4.27 � 67.77 	 13.2 � 72.86 	 3.38
a5a 61.36 	 3.81 � 66.34 	 8.74 � 67.72 	 1.86 � 75.25 	 3.03 � 69.27 	 15.9 � 71.81 	 3.93 � 81.71 	 4.09 83.13 	 0.57

clean1 65.67 	 2.94 � 59.35 	 6.64 � 60.65 	 4.16 � 70.89 	 3.27 54.56 	 3.29 � 53.95 	 4.21 � 61.25 	 11.7 � 75.15 	 6.94

mnist7vs9 75.84 	 4.02 � 89.13 	 1.51 � 87.53 	 2.18 � 77.47 	 4.83 � 89.46 	 1.01 85.39 	 3.74 � 78.89 	 20.8 � 93.29 	 0.46

autavn 70.06 	 9.32 � 65.49 	 6.04 � 73.76 	 5.02 � 73.65 	 4.29 � 66.87 	 1.16 � 77.46 	 9.35 67.09 	 8.45 � 78.92 	 8.18
rcv1 69.65 	 5.26 � 67.60 	 1.83 � 74.48 	 8.12 63.35 	 3.34 � 60.01 	 5.67 � 68.56 	 4.54 � 70.64 	 2.68 � 75.80 	 3.52

LIISP(cp) w/ t/ l 12/ 2/ 0 14/ 0/ 0 11/ 2/ 1 10/ 2/ 2 11/ 0/ 3 10/ 2/ 2 12/ 2/ 0 rank first 11/ 14

On each dataset, 10 test runs were conducted and the average accuracy as well as standard deviation are presented, with the best one emphasized in bold. Besides,
� (�) indicates our approach is significantly better (worse) than the compared method (paired t-tests at 95 percent significance level).

TABLE 3
Specification of the Benchmark Datasets, Deep Neural Network

Models, and Optimization Algorithms

Dataset # Train # Test # Feature Model Optimizer

MNIST 60,000 10,000 784 MLP Adam
SVHN 73,257 26,032 150,528 ResNet Adam

4. https://pytorch.org/hub/pytorch_vision_resnet/
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the classifier. We also list the performance of the PNU [10]
method, which regards all the noisy labels as true ones.

We report the average accuracy and standard devia-
tion on MNIST and SVHN in Fig. 2. Among these three
algorithms, the LIISP algorithms converge to the highest
accuracy. Notice that PNU is comparable or more accu-
rate than the PU/UU methods, although they directly
treat the noisy labels as the correct ones. This phenome-
non indicates that it is necessary to consider the noisy
labeled data in the LIISP scenario, although they are
limited.

Comparison with Inaccurate Supervision Algorithms. We
then compare the LIISP algorithms with noisy label learning
approaches (for inaccurate supervision) to validate the use-
fulness of unlabeled data. Fig. 3 reports the average accu-
racy and standard deviation of the LIISP(os/cp), PUIW/
UUIW, and IW algorithms with increasing noise rate. In
general, the proposed LIISP(os/cp) algorithms achieve the
highest accuracy and drop more slowly than PUIW/UUIW
and IW methods, as the proposed algorithms consider the
structure of label noise and the statistical information (class-
priors) of the discrepant unlabeled data. Additionally, LIISP
(os/cp) are always more accurate and stable than the IW
under fixed noise rate, indicating the robustness of the pro-
posed LIISP(os/cp) algorithms and usefulness of unlabeled
data on alleviating label noise, particularly when there are
abundant unlabeled data available.

6.3 Bug Detection Task

In this part, we examine the LIISP(os) algorithm in the real-
world application, the bug detection task, where we aim to
predict whether a source code is clean or buggy. Apart from
those surely buggy codes reported by senior engineers
(clean labeled data), those codes checked many times or
newly fixed also potentially conceal bugs (noisy labeled
data). Moreover, there exist a number of source codes that
are never checked (unlabeled data). Therefore, this real-
world application accords to a typical scenario of learning
from incomplete and one-sided inaccurate supervision.

Source codes in a software project are usually modified
by engineers. To define the positive and negative data in a
bug detection task, we list the following three versions of
each source code file according to whether it has related
issues committed by engineers during the developing
process:

a) version before the issue is committed;
b) version after the issue is reported but not yet fixed;
c) version after the issue is fixed and closed.
After identifying the relations between source codes

and issues, we treat different versions of code files as indi-
vidual instances. Specifically, we mark code files in ver-
sion (a) and (b) as buggy instances (clean positive), while
treat a code file in version (c) as a clean instance (noisy
negative). Meanwhile, those source codes that are unre-
lated to any issue are marked as the unlabeled instances in
our scenario.

Experiment Settings. We choose two public bug detec-
tion datasets of Java projects from GitHub [53]: (i) Orient-
DB5 and (ii) Elasticsearch,6 where the former one is a
database engine project and the latter one is a search
engine project. We choose version 2013.12.10 for Orient-
DB and version 2014.02.03 for Elasticsearch. For each
dataset, the feature of each instance is extracted either
from the whole code file or from the class modules, and
thus there are four datasets in total. Details of these four
datasets are listed in Table 4.

We randomly take 50 buggy instances and 50 clean ones
as the labeled data and set the rest code instances as unla-
beled. For all experiments, we perform 10 tests on various
splits of the whole dataset. We use the number of detected
true positive bugs to characterize the performance, namely,
the number of bugs identified by the algorithm are indeed
buggy. More specifically, we denote the set of top k bugs
detected for dataset S by the algorithm as S@k, and the

Fig. 2. Performance curve (in average accuracy and standard deviation)
of the deep neural network implementation of the LIISP(os/cp) algo-
rithms with other deep semi-supervised learning methods on the MNIST
and SVHN datasets.

Fig. 3. Performance curve (in average accuracy and standard deviation)
of the LIISP(os/cp) algorithms and the contenders with respect to an
increasing noise rate.

5. https://github.com/orientechnologies/orientdb
6. https://github.com/elasticsearch/elasticsearch
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collection of underlying ground-truth bugs in the test set as
B. Then we define the number of true bugs in the detected k
instances as jðS@kÞ \ Bj. Evidently, the better the perfor-
mance of the algorithm is, the larger the quantity jðS@kÞ \
Bjwill be.

Result Analyses. We then study performance of the LIISP
(os) algorithm on these four bug detection tasks. We report
the average number of detected bugs and their standard
deviation in Fig. 4. To better present the results, we only
choose LSSC and SIIS as comparative methods, as they are
the most competitive ones and outperform other baselines
on benchmark datasets. Fig. 4 demonstrates that the LIISP
(os) algorithm has a very promising performance compared
with other two methods, especially on the Elasticsearch
dataset, see Figs. 4c and 4d. SIIS also shows a rather compa-
rable result on the OrientDB dataset but behaves poorly on
the Elasticsearch dataset. The reason may be that SIIS is not
suitable for a relatively large dataset (like Elasticsearch), as
it requires to perform the singular value decomposition on
the Laplacian matrix, which is in the cubic dependence of
the size of the training set.

Furthermore, we demonstrate the ability of the LIISP(os)
algorithm to find out potentially buggy codes in Fig. 5. In
the following, we take the results on the OrientDB dataset
as an example. As highlighted in the blue frame, this code
file was fixed and labeled as clean in the current version
(Oct 2, 2013). However, the code file is scored high by the
LIISP(os) algorithm, which is suspected to be buggy with
high probability. After checking their later commit records,
which is highlighted in the orange frame, we find that this
code file is indeed buggy and fixed after three months,
although this concealed bug is not detected in the 2013 ver-
sion. This strongly supports the effectiveness of our pro-
posed algorithm.

Overall, these phenomena validate the effectiveness of
the LIISP(os) algorithm, which not only achieves promising
results in benchmark datasets but also succeeds in the real-
world application for the bug detection task.

7 CONCLUSION

In this paper, we study the problem of Learning from
Incomplete and Inaccurate SuPervision (LIISP). We observe
that in many real-world applications, the label noise usually
occurs in a one-side manner, which enables us to exploit the
one-sided accurate label and sufficient unlabeled data to
alleviate the noisy labeled data via the importance weight-
ing technique. Furthermore, when the noisy labels exist in
both positive and negative data, we additionally exploit the
class-prior information for the discrepant unlabeled data
to resist the label noise. Our proposed approaches are equ-
ipped with nice theoretical guarantees: by excess risk analy-
sis, we theoretically justify the usefulness of unlabeled data
in defensing instance-dependent label noise. We conduct
extensive experiments on benchmark datasets as well as the
bug detection task, demonstrating the superiority and
robustness of our methods compared with contenders from
other categories: semi-supervised learning, noisy label
learning, and robust semi-supervised learning.

Fig. 5. Potential bugs detected by the LIISP(os) algorithm on the Ori-
entDB and Elasticsearch datasets. The username information is
mosaiced in order to protect the privacy.

Fig. 4. Performance curve w.r.t. an increasing number of predicted potential bugs. The performance is measured by the number of true bugs in top k
predicted data, jðS@kÞ \ Bj. The superior the algorithm is, the larger the quantity jðS@kÞ \ Bj will be.

TABLE 4
Descriptions of Datasets for the Bug Detection Task

Dataset Positive (Buggy) Negative (Clean) Total # Dim

OrientDB (File) 270 1,233 1,503 7
OrientDB (Class) 208 1,567 1,847 102
Elasticsearch (File) 487 2,548 3,035 7
Elasticsearch (Class) 678 5,230 5,908 102
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In the future, we will consider other weakly supervised
learning tasks in open and dynamic environments [54], [55].
Moreover, in addition to incomplete and inaccurate super-
vision, we will further consider other weak supervision,
such as the supervised information from knowledge
reasoning [56].
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