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Abstract

The problem of online label shift, where label distribution evolves

over time while the label-conditional density remains unchanged,

has attracted increasing attentions. Although existing approaches

have achieved sound theoretical guarantees and encouraging per-

formance, the assumption of an unchanged conditional distribution

may limit its application in broader tasks. In this paper, we investi-

gate an extended variant named generalized online label shift (GOLS)
problem, in which we relax the label shift assumption on the raw

feature space and instead assume the existence of an unknown

invariant representation such that conditional distribution of this

representation given the label remains constant. To handle GOLS,

our main idea involves capturing the inherently stable information

from non-stationary streams, in the form of learning an invariant

representation. Specifically, we design a novel objective to learn

the invariant representation, which exploits the unique structure in

GOLS. To optimize this objective, we propose an algorithm employ-

ing online ensemble paradigm to perform multi-resolution updates
using various historical data windows, thereby enhancing the stabil-

ity of the representation. This approach is theoretically guaranteed

to achieve an optimal convergence rate. To improve the efficiency of

the ensemble framework, we further propose a mask-based imple-

mentation for ensembling with DNNs. Experiments on benchmarks

and real-world tasks validate the effectiveness of our approach.
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1 Introduction

Machine learning methods that handle distribution shifts in online

and open environments have attracted more and more interests

nowadays [15, 32, 33, 46]. Recently, the online label shift problem,

a fundamental and crucial scenario, has attracted increasing atten-

tions [2, 3, 28, 29, 40], in which label distribution shifts as time

evolves while the class-conditional distribution remains same. Re-

search on online label shift scenarios has pioneered the exploitation

of online learning approaches to deal with online distribution shift

problems, achieving both rigorous theoretical guarantees and en-

couraging performance. Although existing algorithms for online

label shift have achieved remarkable success, the assumption of

unchanged conditional distribution D(x | 𝑦) may limit their appli-

cations in broader tasks, especially when the raw data’s complexity

requires deep neural networks (DNNs) to extract representations.

Motivated by above challenge of assumption mismatches in real-

world data when applying label shift algorithms, we investigate the

generalized online label shift (GOLS) problem [12, 39], an extended

scenario of label shift. The key element of GOLS lies in the exis-

tence of an unknown invariant representation (or feature extractor)

𝜙★(·) : X ↦→ H , whereX ⊆ R𝑑 is the feature space andH ⊆ R𝑑 ′ is
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(a) Raw feature’s distribution D𝑡 (x | 𝑦)
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(b) Label distribution D𝑡 (𝑦) (c) D𝑡 (𝜙 (x) | 𝑦) of Agoe (d) D𝑡 (𝜙 (x) | 𝑦) of [39]

Figure 1: We visualize iWildCam [4] dataset to test if the generalized online label shift assumption holds. (a) T-SNE Visualization of raw feature’s

conditional distribution given the label 𝑦. The conditional distribution of raw features given the label D𝑡 (x | 𝑦) is unstable, indicating previous

label shift assumption may not hold in real-world tasks. (b) Visualization of label distributions in data stream, where we calculate the heatmap

of label distribution at each round. (c) & (d) Visualization of the conditional distribution of representations learned by ours and by Wu et al.

[39]. The transparency indicates timestamp of that cluster. The conditional distribution D𝑡 (𝜙 (x) | 𝑦) remains more consistent across different

timestamps by our Agoe than by [39], as we design a multi-resolution updating strategy to better learn the representation.

the representation space. This invariant representation ensures that,

even if the raw feature space does not satisfy label shift assump-

tion, the conditional distribution of representations D(𝜙★(x) | 𝑦)
remains the same in the data stream. Therefore, the GOLS problem

is a flexible and general variant of label shift, and is prevalent in

many real-world tasks. For instance, in the wild animal species

recognition tasks [4], the appearances of each species remain con-

sistent, but the proportion of different animals varies with season

and location. Concretely, we analyze a real-world animal recogni-

tion dataset iWildCam [4] to test if the GOLS assumption holds,

where we employ a MobileNetV2 [31] as the feature extractor 𝜙 . As

illustrated in Figure 1 (a), (b), and (c), the conditional distribution of

raw features x given the label 𝑦 is unstable, while the conditional

distribution D𝑡 (𝜙 (x) | 𝑦) is stable across all environments, and the

label distribution D𝑡 (𝑦) changes over time.

Recently, Wu et al. [39] investigate the GOLS problem and em-

ployed a self-supervised learning method to update the represen-

tation based only on the current unlabeled data, which achieves

promising empirical performance. In this paper, we aim to lever-

age historical information to learn a more stable representation in

GOLS. This is challenging because the data distribution is changing

over time, requiring us to adaptively determine the appropriate

length of historical data to reuse. By appropriately reusing histori-

cal information, as illustrated in Figure 1 (c) and (d), the conditional

distribution exhibits more consistent across different timestamps

given representation learned by ours than by [39], highlighting the

benefits of exploiting historical information.

We propose our Adapting to GOLS by Online Ensemble (Agoe)
approach by exploiting multi-resolution updates to learn stable rep-

resentations. Our principal idea is to capture the inherently stable

information from non-stationary data streams, with the form of

learning an invariant representation. Specifically, to make use of

the unique structure in GOLS data stream, we first propose a novel

objective to learn the invariant representation, which regularizes

the representation to align with classifiers thereby enhancing the

stability of the representation. Then, we optimize the objective

by making use of the online ensemble paradigm [45] to leverage

different lengths of historical data windows to better learn a sta-

ble representation in, which is theoretically proved to achieve the

optimal convergence rate in the non-convex non-smooth scenarios.

To further enhance the efficiency of our ensemble paradigm,

we propose a mask-based mechanism for online ensemble with

DNNs, where we segment the network into multiple sub-parts,

each treated as a base learner that is updated with a different scope

of historical data. Then, the weights of the meta learner are used as

learning rates, determining the importance of different historical in-

formation. Therefore, we performmulti-resolution updates by using
various historical data windows, thereby learning a stable represen-

tation. Finally, we validate our approach empirically, demonstrating

its effectiveness on benchmarks and real-world datasets, including

computer vision and natural language processing tasks.

Contribution. Our contributions are mainly three-fold:

• We investigate a generalized version of online label shift problem

named GOLS, and we introduce a novel objective to learn the

invariant representation by exploiting unique structure of GOLS.

• We optimize the objective by the online ensemble paradigm,

performing multi-resolution updates by various historical data

windows. We achieve the optimal convergence rate and tackle

the remaining problem of Cutkosky et al. [9] that algorithm’s

parameters need to be set according to the quality of initial point.

• We provide an efficient mask-based implementation of our ap-

proach for online ensemble with DNN architectures, which im-

proves the computational and storage efficiency of the algorithm.

2 Related Work

In this section, we discuss the related works to our paper.

Online Label Shift. The label shift problem has been extensively

studied in offline scenarios [30, 43]. Recently, the more challeng-

ing online label shift where label distribution evolves over time

has attracted increasing attentions. Wu et al. [40] make the first

attempt, they develop an unbiased risk estimator using unlabeled

data for model assessment and employ online gradient descent for

model updating. Bai et al. [3] introduce an algorithm based on the

online ensemble structure, achieving dynamic regret guarantees

by maintaining a group of base learners, each with a different step

size, and employing a meta learner to combine their outputs and

adapt to environmental shifts. Baby et al. [2] transform the online

label shift problem into an online regression problem, and utilize
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an ensemble-based approach that reweights the initial classifier

to adapt to new environments. Recently, Qian et al. [29] propose

a wavelet-based method to handle the online label shift problem

based on the restarting mechanism, which restarts the classifier

once a significant distribution shift is detected.

However, these methods typically focus on the case of traditional

label shift scenarios. Such an assumption may be hard to satisfy, es-

pecially in many real-world applications where DNNs are employed

to extract the representation of the data. To this end, Wu et al. [39]

study the problem of generalized online label shift, and employ a

self-supervised learning method to update representations. Albeit

with promising empirical performance, the small sample size in

each round may potentially result in unstable representation up-

dates, which may harm the learning of the invariant representation,

and they do not consider to exploit historical information to en-

hance the updating of representations. Besides, theoretical property

of their method for learning the representation remains unclear.

Meta-Learning. Meta-learning is another popular research area

of its own interests, aiming to learn a shared model prior for mul-

tiple learning episodes. A classic meta-learning problem is often

formulated as a bi-level optimization problem [16], in which the

inner-level takes a few gradient descent steps to adapt the model to

the current task and the outer-level evaluates the model after adap-

tation steps are taken [13, 38]. Recent progress has been made in

online meta-learning within the streaming scenario [14, 44], where

task instances are sequentially revealed, and the learner learns the

latest task in each round. However, meta-learning methods typi-

cally assume the existence of a global gradient direction to optimize

the model, which does not hold in non-stationary GOLS streams.

Learning the Representation. There are several previous at-

tempts to learn the representation to improve the learning perfor-

mance. Many meta-learning methods focus on extracting knowl-

edge from a variety of tasks and adapting it to new tasks that were

not seen during training, by extracting a good representation across

multiple training tasks. Recently, Liu et al. [20] introduce a method

that initially trains an offline representation, and then “fix” the

representation and utilize gradients for adaptation during the test-

ing phase. However, these methods tend to learn a representation

in an offline manner and then fix it once and for good, which is

not suitable for our setting where the representation needs to be

updated in an online manner in the non-stationary data stream.

Recently, several sequential methods that update representa-

tions to adapt to the new environments have been proposed in the

literature. Continual learning methods [8, 18, 22] have been intro-

duced to update model representations to avoid the catastrophic

forgetting phenomenon in the data stream. More recently, test-time

adaptation (TTA) methods [6, 34, 37] have been developed to adjust

model outputs for online test domains in the absence of labeled

data from test distributions. However, these works primarily focus

on the shifting environments in a broad context, which may be too

general to capture the special structure of GOLS streams.

3 Problem Formulation

We consider multi-class classifications. We denote X ⊆ R𝑑 as the

feature space, H ⊆ R𝑑 ′ as the representation space, and Y =

[0, 1]𝐾 as the label space. The model ℎ : X ↦→ Y consists of

two components: a representation function (or feature extractor)

𝜙 : X ↦→ H , and a classifier w : H ↦→ Y to output the prediction.

The representation function 𝜙 is specified as 𝜙 (x) = 𝜑 (x;Φ), where
𝜑 is the function of the representation model, such as a deep neural

network; and Φ ∈ R𝑛 denotes the parameter of this function, e.g.,

parameters of a DNN. Consequently, the model ℎ can be decom-

posed as ℎ = w ◦ 𝜙 . We formulate the GOLS problem into two

stages: (i) offline initialization and (ii) online adaptation.

(i) Offline Initialization. In the offline initialization stage,

the learner collects a set of labeled data 𝑆0 = {x𝑖 , 𝑦𝑖 }𝑚0

𝑖=1
from the

offline distribution D0 (x, 𝑦). The goal of initialization is to obtain

a well-performed initial representation Φ0 and classifier w0 that

generalize well over the distribution D0.

(ii) Online Adaptation. After initialization, the learner de-

ploys the model to a shifting data stream. At each round 𝑡 , the en-

vironment reveals the current distribution D𝑡 and the learner only

receives a small-size labeled data batch 𝑆𝑡 , where 𝑆𝑡 = {x𝑖 , 𝑦𝑖 }𝑚𝑡

𝑖=1

is i.i.d. sampled from the distribution D𝑡 . The assumption of the

GOLS is formally presented as follows.

Assumption 1 (Generalized online label shift). The label-
conditional distributions given the optimal representation 𝜙★(·) :

X ↦→ H remain the same, i.e., D𝑡 (𝜙★(x) | 𝑦) = D𝑡−1 (𝜙★(x) | 𝑦),
for any 𝑡 ≥ 1 and 𝑦 ∈ {1, . . . , 𝐾}. Besides, the data distribution
at each round D𝑡 is sampled from a distribution P

all
, and there

exists a universal distributionD
all

such thatED𝑡∼Pall
E(x,𝑦)∼D𝑡

[ℓ] =
E(x,𝑦)∼D

all

[ℓ] for any well-conditioned loss function ℓ .

The GOLS assumption extends the traditional label shift assump-

tion [3, 40] by considering the invariant representation 𝜙★, which

makes it applicable to various real-world scenarios, such as wild

animal recognition [4] and recommendation systems [26], where

the representations given the label are stable. Unlike the adversarial

case in [3], D𝑡 is supposed to be stochastic and sampled from a

universal distribution in our work. We remark this is reasonable for

many real-world applications, where distribution is not adversari-

ally changed but follows certain patterns such as periodic changes

in location or time, e.g., the location changes of cameras or the

seasonal variations in product sales. The learner aims to learn a

sequence of representations {Φ𝑡 }𝑇𝑡=1
and classifiers {w𝑡 }𝑇𝑡=1

that

minimize the cumulative expected risk, i.e., the goal is to minimize

𝑇∑︁
𝑡=1

𝑅𝑡 (w𝑡 ◦ Φ𝑡 ) −
𝑇∑︁
𝑡=1

𝑅𝑡 (w★
𝑡 ◦ Φ★),

where 𝑅𝑡 (w ◦ Φ) = E(x,𝑦)∼D𝑡
[ℓ (w ◦ 𝜑 (x;Φ), 𝑦)] is the expected

risk, ℓ : Y×Y ↦→ R is the loss, and {w★
𝑡 }𝑇𝑡=1

and Φ★ are the optimal

classifiers and representation, respectively.

4 Our Approach

In this section, we present ourAdapting to GOLS by Online Ensemble
(Agoe) approach. We first introduce a novel objective to effectively

learn the representation. Then, we propose our algorithm to opti-

mize the objective, which employs the online ensemble paradigm to

conduct multi-resolution updates. Finally, we develop a mask-based

updating mechanism to efficiently ensemble with DNNs.
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Algorithm 1: Outer-Loop: Perturbed Descent

Input: Initial representation Φ0

Initialize: Δ1 = 0;
for 𝑡 = 1, . . . ,𝑇 do

Get the Δ𝑡 from Algorithm 2;

Update representation Φ𝑡 = Φ𝑡−1 + Δ𝑡 ;

Sample a scalar 𝑠𝑡 uniformly from [0, 1];
Get the perturbed gradient ĝ𝑡 = ∇�̂�𝑡 (Φ𝑡 + (𝑠𝑡 − 1)Δ𝑡 );
Send ĝ𝑡 to Algorithm 2.

end

4.1 Learning Invariant Representation in GOLS

In this section, we propose our approach for learning the represen-

tation in the GOLS problem.

ANovel Objective to Learn Φ★. To learn the invariant representa-
tion, we propose a novel objective to capture the unique structure in

GOLS. To start with, we observe that the representation Φ★ should

not only be shared and invariant across all the environments, but

also “aligned” with the corresponding optimal classifier w★
𝑡 at each

round 𝑡 . Therefore, inspired by [1], our objective extends beyond

simply considering the cumulative risk of

∑𝑇
𝑡=1

𝑅𝑡 (w𝑡 ◦ Φ𝑡 ), and
also includes a penalty term that regularizes the representation to

be aligned with the classifier. Formally, our objective is

min

{Φ𝑡 }𝑇𝑡=1

𝑇∑︁
𝑡=1

𝑅𝑡 (w𝑡 ◦ Φ𝑡 ) −
𝑇∑︁
𝑡=1

𝑅𝑡 (w★
𝑡 ◦ Φ★),

s.t.

𝑇∑︁
𝑡=1

∇w |w=w★
𝑡
ℓ (w ◦ 𝜑 (x;Φ𝑡 ), 𝑦)

2

2

= 0. (1)

Note that optimizing the aforementioned objective with constraints

is challenging, especially when employing non-convex, non-smooth

representation models such as DNNs. Therefore, we employ the

Lagrange multiplier method to construct the following surrogate

loss function 𝐿𝑡 : R𝑛 ↦→ R:

𝐿𝑡 (Φ) = 𝑅𝑡 (w𝑡 ◦ Φ) + 𝜆 · E(x,𝑦)∼D𝑡

[∇w |w=w★
𝑡
ℓ (w◦𝜑 (x;Φ), 𝑦)

2

2

]
.

Thus, the goal is translated to get a representation sequence to

minimize

∑𝑇
𝑡=1

𝐿𝑡 (Φ𝑡 ) −
∑𝑇
𝑡=1

𝐿𝑡 (Φ★). However, learner can not

observe expected function 𝐿𝑡 , but only the empirical version �̂�𝑡 :

�̂�𝑡 (Φ) = 𝑅𝑡 (w𝑡 ◦ Φ)+𝜆 ·
∑︁

(x,𝑦) ∈𝑆𝑡

[∇w |w=w𝑡
ℓ (w◦𝜑 (x;Φ), 𝑦)

2

2

]
, (2)

where 𝑅𝑡 (w ◦ Φ) = ∑
(x,𝑦) ∈𝑆𝑡 [ℓ (w ◦ 𝜑 (x;Φ), 𝑦)] is the empirical

risk, w𝑡 is the estimated classifier at round 𝑡 . The objective in

Eq. (2) exhibits several benign properties, such as unbiasedness

and consistency, which will be formally proved in Section 5. These

properties are essential for learning invariant information in GOLS.

Remark 1. Our contribution lies in carefully exploiting the unique

structure in GOLS to design a novel objective to learn the repre-

sentation, as in Eq. (2). This objective is proved to be unbiased to

the expected loss 𝐿𝑡 , which is crucial for the convergence analy-

sis of our algorithm. Finally, we remark that this objective can be

efficiently optimized in an online manner, as shown in Section 4.2.

Algorithm 2: Inner-Loop: Online Ensemble

Initialize: Active base learners A𝑡 = ∅
for 𝑡 = 1, . . . ,𝑇 do

Get the gradient ĝ𝑡 from Algorithm 1;

Adjust the set of active base learners A𝑡 .

for each base learner EI ∈ A𝑡 do

Update the base learner as in Eq. (4);

Update the meta learner as in Eq. (5).

end

Send Δ𝑡 to Algorithm 1.

end

Learning the Classifier w𝑡 . To learn the current classifier corre-

sponding to the distributionD𝑡 (𝑦), we tend to exploit the structure
in GOLS problem, i.e.,D0 (𝜙★(x) |𝑦) = D𝑡 (𝜙★(x) |𝑦), ∀𝑡 ∈ [𝑇 ] and
𝑦 ∈ {1, . . . , 𝐾}. Similar to [2] and [29], we employ the class prior

distribution to reweight the initial offline classifier w0 to get the

prediction. Formally, the classifier is updated as

[w𝑡 ◦ 𝜙𝑡 (x)] 𝑗 =
1

𝑍 (x)
[𝝁𝑡 ] 𝑗

D0 (𝑦 = 𝑗) [w0 ◦ 𝜙𝑡 (x)] 𝑗 , ∀𝑗 ∈ [𝐾], (3)

where𝑍 (x) = ∑𝐾
𝑗=1

[𝝁𝑡 ] 𝑗
D0 (𝑦=𝑗 ) [w0 ◦ 𝜙𝑡 (x)] 𝑗 is the normalization fac-

tor, 𝝁𝑡 ∈ [0, 1]𝐾 is the estimated label distribution using 𝑆𝑡 , and

𝜙𝑡 (x) = 𝜑 (x;Φ𝑡 ) is the current round’s representation function.

Therefore, the current classifier w𝑡 is estimated by exploring the

unique structure of generalized online label shift problem, utilizing

both the representation and combining offline and online data.

4.2 Optimizing Objective in an Online Manner

This section illustrates how we optimize the objective in Eq. (2) by

designing multi-resolution updates. Specifically, our approach con-

tains (i) an outer-loop algorithm, and (ii) an inner-loop algorithm.

Outer-loop Algorithm. We observe that our objective exhibits fa-

vorable properties, including unbiasednessE[�̂�𝑡 ] = 𝐿𝑡 , and bounded
magnitude |�̂�𝑡 | ≤ 𝐷 + 𝜆𝐺2

, where 𝐷 is the upper bound of the loss

function ℓ’s absolute value and 𝐺 is the upper bound of the loss

gradient’s norm. Consequently, it conforms to the form of a non-

convex, non-smooth optimization problem, particularly when using

modern DNN architectures with ReLU activation functions or max-

pooling operators, in which the learner can only receive stochastic

and unbiased feedback at each round.

Optimizing such a problem in an online manner poses a signifi-

cant challenge [19]. In order to solve this problem more stably in an

online manner, we draw inspiration from the insight of Cutkosky

et al. [9] that the design of non-convex optimizers falls in the scope

of online linear optimization, which is a well-explored setting in

online learning. Our algorithm consists of two components: an

inner-loop algorithm and an outer-loop algorithm. At each round

𝑡 , the inner-loop algorithm obtains the descent value Δ𝑡 , which
determines the optimization direction for the representation. The

outer loop then updates the representation using Δ𝑡 , and applies a

small perturbation to the gradient which is used as the feedback

for the inner-loop. The motivation of the outer-loop algorithm is

that the perturbation enhances algorithmic stability and improves

optimization in non-convex, non-smooth scenarios. Such an idea



Adapting to Generalized Online Label Shift by Invariant Representation Learning KDD ’25, August 3–7, 2025, Toronto, ON, Canada

of employing randomly perturbed gradients has been seen in the

optimization literature [5, 21, 25]. The outer-loop algorithm is sum-

marized as Algorithm 1. In the following, we detail how to get the

update value Δ𝑡 by designing the inner-loop algorithm.

Inner-loop Algorithm. The inner-loop algorithm, which selects

the descent value Δ𝑡 , is cast as an online learning problem. If the

problem is easy, a simple online learning algorithm such as online

gradient descent (OGD) [47] with specially tunned hyperparame-

ters is sufficient [9]. However, when the problem is challenging and

complex, hyperparameters of the algorithm are hard to determine.

To this end, we employ the online ensemble paradigm [45] to learn a

more stable descent value as described in Algorithm 2. Specifically,

we maintain multiple base learners, each utilizing a different length

of historical data to update the descent value. A meta learner is then

used to combine the predictions of these base learners, which indi-

cates the importance of different historical information. Together,

we perform multi-resolution updates using various historical data
windows. In the following, we detail the (i) base learner and (ii)

meta learner in the inner-loop algorithm.

(i) Base Learner. Our inner-loop algorithm maintains multiple

base learners EI ∈ A𝑡 , each running over different intervals to

exploit different lengths of historical information, where A𝑡 is the

set of active base learners whose interval I contains 𝑡 . We employ

coin-betting-based algorithm [27] for updating the descent value.

For the base learner EI running on the interval I = [𝑠𝑖 , 𝑒𝑖 ], the
corresponding update value is

ΔI
𝑡 = −

∑𝑡−1

𝜏=𝑠𝑖
ĝ𝜏

𝑡 − 𝑠𝑖

(
1 −

𝑡−1∑︁
𝜏=𝑠𝑖

ĝ⊤𝜏 Δ
I
𝜏

)
, (4)

where ΔI
𝑡 is the descent value learned by base learner EI of the

inner-loop algorithm, the perturbed gradient ĝ𝑡 = ∇�̂�𝑡 (Φ𝑡 + (𝑠𝑡 −
1)Δ𝑡 ) is generated by the outer-loop Algorithm 1. We schedule base

learners based on geometric covering (GC) intervals [10]. Note that

the number of active base learners is at most ⌈log𝑇 ⌉ at each round.

(ii) Meta Learner. The meta learner combines the predictions of

base learners to get the final output, through a weighted combina-

tion way. Specifically, at round 𝑡 , meta learner assigns a weight 𝑝I𝑡
to each active base learner EI ∈ A𝑡 . We update weights for active

base learners based on AdaNormalHedge [23]. For each learner EI ,
we maintain a “potential function”𝜓 , and a “reusability function”

𝜔 with respect to this potential. Subsequently, the meta learner

aggregates outputs of active base learners via weighted sum:

𝑝I𝑡 =
𝜔 (𝑅I

𝑡−1
,𝐶I
𝑡−1

)∑
EI ∈A𝑡

𝜔 (𝑅I
𝑡−1

,𝐶I
𝑡−1

)
, for all EI ∈ A𝑡 ,

and the final output Δ𝑡 =
∑︁

EI ∈A𝑡

𝑝I𝑡 Δ
I
𝑡 .

(5)

Here, the meta learner assigns weights to each base learner based

on their historical performances and combines various lengths

of historical data to produce the final output. We use 𝜓 (𝑅,𝐶) =

exp( [𝑅]2

+/3𝐶) as the potential function, where [𝑥]+ ≜ max(0, 𝑥)
and𝜓 (0, 0) is defined to be 1. And the weight function 𝜔 is defined

w.r.t. this potential 𝜔 (𝑅,𝐶) ≜ 1

2
(𝜓 (𝑅 + 1,𝐶 + 1) −𝜓 (𝑅 − 1,𝐶 + 1)) .

Besides, in Eq. (5), 𝑅I
𝑡−1

=
∑𝑡−1

𝜏=𝑖 ⟨̂g𝜏 ,Δ𝜏 ⟩ − ⟨̂g𝜏 ,ΔI
𝜏 ⟩, and 𝐶I

𝑡−1
=

∑𝑡−1

𝜏=𝑖 | ⟨̂g𝜏 ,Δ𝜏 ⟩ − ⟨̂g𝜏 ,ΔI
𝜏 ⟩|, Theoretically, we remark that by em-

ploying multi-resolution updates, our algorithm improves upon

previous work [9] that our algorithm does not require to know the

quality of the initial point in advance, and we will demonstrate this

contribution in detail in Remark 4.

4.3 Efficient Mask-based Updating for Ensemble

As it can be observed in Eq.(5), the online ensemble paradigm ne-

cessitates maintaining approximately log𝑇 base learners. This re-

quirement may become computationally and storage expensive,

especially when employing DNNs as base learners to learn the rep-

resentation Φ𝑡 where we have to maintain a total of O(log𝑇 ) DNN
architectures at a time, which results in significant computational

and storage burdens, making the algorithm impractical.

To alleviate this computational and storage burden, inspired

by the theoretical results, we propose an efficient masked-based
DNN update mechanism [24]. Specifically, we divide the network

into multiple sub-parts, each functioning as an independent base

learner. We randomly generate a mask sequence {𝑀𝑖 }⌈log𝑇 ⌉
𝑖=1

of

length ⌈log𝑇 ⌉, where𝑀𝑖 ∈ {0, 1}𝑛 for each 𝑖 ∈ [⌈log𝑇 ⌉], such that

⌈log𝑇 ⌉∑︁
𝑖=1

∥𝑀𝑖 ∥1 = 𝑛, and𝑀⊤
𝑖 𝑀𝑗 = 0,∀𝑖, 𝑗 ∈ [⌈log𝑇 ⌉], 𝑖 ≠ 𝑗, (6)

where 𝑛 is the dimension of representation Φ. Eq. (6) indicates
that the combination of all masks is equal to the total number of

parameters in DNN, and masks are orthogonal and not overlap

to each other. The base learner 𝑖 at round 𝑡 is Φ𝑡 ⊙ 𝑀𝑖 , where ⊙
indicates the element-wise multiplication. In practice, we divide

the neural network into a maximum of 5 parts.

Once one base leaner EI is removed from A𝑡 at round 𝑡 , the

corresponding mask is set to zero to prevent updating of this part.

Conversely, if one base learner is added to A𝑡 , we will set the cor-

responding mask to one, thereby resuming to update this part of

the DNN. Then, we update each part of the DNN using different

lengths of historical information to better learn a stable representa-

tion, with the help of multi-resolution updates. Finally, the weight

𝑝𝑖𝑡 for 𝑖 ∈ [⌈log𝑇 ⌉], generated by the meta learner as in Eq. (5) by

the training loss of each part, is used to determine learning rates of

each part of the network, which reflects the importance of different

historical information. Therefore, we update the network by

Φ𝑡 =

⌈log𝑇 ⌉∑︁
𝑖=1

(
Φ𝑡−1 ⊙ 𝑀𝑖 + 𝑝𝑖𝑡 · Δ𝑡 ⊙ 𝑀𝑖

)
.

Efficiency Discussion. We remark that the computational and

storage efficiency of our algorithm is comparable to that of the

vanilla OGD. Specifically, when a mask 𝑀𝑖 is employed, only the

parameters in the corresponding sub-network are updated, while

the other parameters remain unchanged and thus do not require

gradient calculation. Consequently, the computational complexity

of our algorithm is similar to that of vanilla OGD. Furthermore, the

storage cost is also comparable to that of vanilla OGD, as we only

need to store the parameters of one DNN along with the masks,

which is O(𝑛), where 𝑛 is the dimension of representation Φ.
To summarize, we implement the online ensemble paradigm by

updating each part of the DNN with different scopes of historical
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Figure 2: Our masked-based update mechanism for efficiently online ensemble with DNNs, where we segment the network into multiple

sub-parts, each treated as a base learner EI and updated using different lengths of historical data. Then, the weight of meta learner is employed

to determine learning rate of each part. Together, we exploit multiple lengths of historical data windows to perform multi-resolution updates.

data. With the help of the meta learner, the weight 𝑝𝑖𝑡 adaptively ad-

justs the learning rates according to the importance of the historical

data, thereby learning a stable representation with multi-resolution

updates. This mechanism substantially reduces the complexity of

the online ensemble paradigm for DNNs, making it practical for

real-world tasks. The whole process is illustrated in Figure 2.

Remark 2. Compared with previous mask-based or pruning-based

updating methods [17, 24], we utilize the ensemble paradigm which

uses different lengths of historical data to update each sub-part

of the network, and the weights in meta learner 𝑝𝑖𝑡 is used to de-

termine the importance of different scopes of history. Therefore,

our mechanism performs multi-resolution updates to exploit the

temporal structure of data streams, such as periodic changes or

recurring shifts, under the guidance of the online ensemble par-

adigm. Besides, our mechanism is general and can be applied to

various scenarios, including computer vision and natural language

processing, as demonstrated in experimental results in Section 6.2.

5 Theoretical Guarantees

In this section, we provide the theoretical guarantees. We first show

that our objective �̂�𝑡 is unbiased.

Proposition 1 (Unbiasedness). Our designed estimator �̂�𝑡 is an

unbiased estimation of 𝐿𝑡 , for all Φ ∈ R𝑛 :

E(x,𝑦) ∈D𝑡

[
�̂�𝑡 (Φ)

]
= 𝐿𝑡 (Φ) .

Then, we prove that our Algorithm 2 can achieve the following

strongly adaptive regret guarantee.

Theorem 1 (Parameter-free Strongly Adaptive Regret).

For any interval I = [𝑠, 𝑒] ⊆ N and any comparator u ∈ R𝑛 , our
Algorithm 2 satisfies

E
[
Reg[𝑠,𝑒 ]

𝑇
({Δ𝑡 }𝑇𝑡=1

)
]
≜E

[
𝑒∑︁
𝑡=𝑠

⟨g𝑡 ,Δ𝑡 ⟩
]
−

𝑒∑︁
𝑡=𝑠

⟨g𝑡 , u⟩ ≤ Õ
(
∥u∥

√︁
|I |

)
,

where g𝑡 ≜ ∇𝐿𝑡 (Φ𝑡 + (𝑠𝑡 − 1)Δ𝑡 ) is the perturbed gradient, 𝑂 (·)
ignores the logarithmic factors in𝑇 , ∥u∥ is the norm of the comparator,
and |I | = 𝑒 − 𝑠 + 1 is the length of the interval.

Then, we introduce the notion of (𝛿, 𝜀)-stationary point, a con-

cept that is commonly used in the field of optimization [9, 11, 42].

Definition 1 (Stationary Point). A point x is a (𝛿, 𝜀)-stationary
point of an almost-everywhere differentiable function 𝐿 if there is

a finite subset S of the ball of radius 𝛿 centered at x such that for y
selected uniformly from S,E[y] = x and ∥E[∇𝐿(y)] ∥ ≤ 𝜀.

Definition 1 means that if our algorithm finds a (𝛿, 𝜀)-stationary
point, the gradient of that solution will be minimized, suggesting

that our algorithm converges and finds the invariant representation.

We then show our algorithm achieves an optimal convergence rate.

Corollary 1 (Convergence to the Stationary Point). For a
non-convex and non-smooth function 𝐿𝑡 , ∀𝑡 ∈ [𝑇 ], under Assump-
tion 1, for all 𝛿 > 0, Algorithm 1 guarantees that:

E

[
1

𝑇

𝑇∑︁
𝑡=1

∇𝐿𝑡 (Φ̄𝑡 )𝛿 ] ≤ 2𝛾

𝛿𝑇
+ max

(
5𝐺2/3𝛾1/3

(𝑇𝛿)1/3

,
6𝐺
√
𝑇

)
,

where 𝐿𝑡 (Φ) = ED𝑡∼Pall
[𝐿𝑡 (Φ)], Φ̄𝑡 is the representation randomly

selected from {Δ𝑡 }𝑇𝑡=1
as formally defined in Appendix B.3, ∥ · ∥𝛿 is

the 𝛿-norm as defined in Definition 2, 𝐺 is the upper bound of the
gradient norm such that E[∥g𝑡 ∥2] ≤ 𝐺2, and 𝛾 ≜ 𝐿𝑡 (Φ0) − 𝐿𝑡 (Φ★)
is the quality of the initial point.

Remark 3 (Optimal Rate of Convergence). Corollary 1 demon-

strates that our algorithm can converge to the stationary point,

thereby tracking the optimal representation at an optimal rate
of O(𝛾𝛿−3𝜀−1), which matches the lower bound established by

Cutkosky et al. [9]. Notably, our proposed approach can handle

non-convex, non-smooth functions, which broadens its applications

to a wider range of scenarios, such as the ReLU activation functions

or max-pooling operators in modern DNNs.

Remark 4 (Technical Contribution). Compared with previous

work of Cutkosky et al. [9], it needs to know the quality of the

initial point and the optimal point 𝐿𝑡 (Φ0) − 𝐿𝑡 (Φ★), which is hard

to estimate in practice. In contrast, our approach can handle it in

a parameter-free way, i.e., we do not need to know the quality of

the initial representation in advance. Such a property is achieved

by our designed ensemble-based algorithm, which can adaptively

learn the representation based on multi-resolution updates and is

more flexible to any initial point cases, thereby learning a more

stable representation. Besides, we extend the regret analysis of [27]

and [23] from full-information to the unbiased stochastic scenario.

6 Experiment

In this section, we present empirical evaluations, including experi-

ments on five benchmark datasets and two real-world tasks related

to the GOLS problem. We aim to answer the following questions:
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Table 1: Average error (%) of different algorithms on benchmark datasets. We report the mean and standard deviation over five runs. The best

are emphasized in bold. The online sample size is set as |𝑆𝑡 | = 128, ∀𝑡 ∈ [𝑇 ].

Linear Shift

FIX A-GEM HAL IWDAN SSL LAME ODC Agoe Skyline

CIFAR10 20.34 17.32 ± 0.15 18.25 ± 0.45 16.75 ± 0.12 16.68 ± 0.14 18.01 ± 0.09 17.92 ± 0.15 16.52 ± 0.19 08.32

CINIC10 33.15 28.55 ± 0.12 32.42 ± 2.55 26.44 ± 0.21 28.21 ± 0.11 31.23 ± 0.17 29.44 ± 0.23 26.11 ± 0.23 15.23

EuroSAT 16.32 11.35 ± 0.12 10.01 ± 3.17 07.21 ± 0.13 07.25 ± 0.12 13.72 ± 0.11 09.13 ± 0.15 07.18 ± 0.34 09.98

Fashion 12.98 07.84 ± 0.08 08.15 ± 0.05 08.39 ± 0.09 08.37 ± 0.08 11.32 ± 0.09 07.99 ± 0.06 08.42 ± 0.76 03.43

MNIST 01.75 01.25 ± 0.03 01.32 ± 0.04 01.07 ± 0.05 01.13 ± 0.03 01.02 ± 0.03 01.13 ± 0.03 01.09 ± 0.03 00.52

Square Shift

FIX A-GEM HAL IWDAN SSL LAME ODC Agoe Skyline

CIFAR10 21.98 17.24 ± 0.15 17.35 ± 0.24 16.92 ± 0.16 17.82 ± 0.19 19.72 ± 0.13 16.89 ± 0.13 17.02 ± 0.33 08.74

CINIC10 34.14 27.15 ± 0.13 30.42 ± 2.25 26.34 ± 0.23 28.92 ± 0.13 30.52 ± 0.15 29.82 ± 0.15 26.32 ± 0.29 15.01

EuroSAT 16.03 11.01 ± 0.96 9.34 ± 3.15 07.22 ± 0.14 07.94 ± 0.15 13.77 ± 0.21 10.01 ± 0.16 07.49 ± 0.38 10.23

Fashion 12.65 08.92 ± 0.08 09.32 ± 0.13 08.15 ± 0.13 08.92 ± 0.13 12.41 ± 0.17 08.72 ± 0.10 08.03 ± 0.76 03.87

MNIST 01.65 01.13 ± 0.02 01.15 ± 0.05 01.05 ± 0.03 01.37 ± 0.05 01.31 ± 0.02 01.19 ± 0.02 01.03 ± 0.03 00.64

Bernoulli Shift

FIX A-GEM HAL IWDAN SSL LAME ODC Agoe Skyline

CIFAR10 20.23 18.02 ± 0.52 18.01 ± 0.12 18.33 ± 0.17 17.91 ± 0.32 18.75 ± 0.23 19.34 ± 0.14 17.13 ± 0.31 09.85

CINIC10 33.59 27.32 ± 0.15 30.98 ± 1.98 26.77 ± 0.28 29.13 ± 0.21 29.76 ± 0.10 29.31 ± 0.72 26.73 ± 0.25 15.96

EuroSAT 15.67 09.03 ± 0.87 09.72 ± 2.01 08.41 ± 0.10 07.99 ± 0.19 14.42 ± 0.11 10.29 ± 0.31 07.32 ± 0.37 10.75

Fashion 12.62 09.43 ± 0.11 08.05 ± 1.11 08.65 ± 0.21 09.02 ± 0.18 12.06 ± 0.13 09.12 ± 0.07 08.77 ± 0.69 04.02

MNIST 01.83 01.24 ± 0.05 01.14 ± 0.13 01.07 ± 0.06 01.39 ± 0.06 01.42 ± 0.03 01.13 ± 0.03 01.06 ± 0.05 00.55

Sine Shift

FIX A-GEM HAL IWDAN SSL LAME ODC Agoe Skyline

CIFAR10 22.03 17.82 ± 0.35 18.92 ± 0.15 18.42 ± 0.18 18.79 ± 0.45 21.64 ± 0.19 18.13 ± 0.14 17.44 ± 0.43 09.88

CINIC10 35.62 27.59 ± 0.29 31.12 ± 1.76 27.69 ± 0.98 30.22 ± 0.32 30.28 ± 0.23 29.02 ± 0.23 28.02 ± 0.31 16.00

EuroSAT 15.76 11.21 ± 0.77 09.98 ± 1.80 08.78 ± 0.32 08.85 ± 0.31 11.23 ± 0.19 09.13 ± 0.09 08.15 ± 0.30 10.69

Fashion 13.79 09.15 ± 0.12 08.51 ± 1.15 09.01 ± 0.52 09.70 ± 0.16 11.86 ± 0.08 09.58 ± 0.12 08.48 ± 0.25 04.23

MNIST 01.92 01.34 ± 0.03 01.30 ± 0.09 01.19 ± 0.03 01.24 ± 0.04 01.18 ± 0.05 01.31 ± 0.03 01.15 ± 0.06 00.59

• Q1. Does Agoe outperform other contenders in GOLS with vari-

ous types of shifts?

• Q2. Does Agoe show effectiveness in real-world tasks with the

generalized online label shift?

• Q3. Does Agoe correctly learn the underlying invariant repre-

sentation Φ★ as time evolves?

6.1 Benchmark Datasets

In this section, we seek to answer Q1. We compare our Agoe with

eight contenders using five benchmark datasets. The competing

methods contain a baseline method (FIX ), two continual learning

methods (A-GEM [8] and HAL [7]), a domain adaptation method

(IWDAN [12]), a self-supervised learning method for updating

the representation (SSL [39]), a sequential representation learn-

ing method (ODC [41]), a test-time adaptation method (LAME [6]),

and a method that trains the representation on all data (Skyline).
We defer the details of the contenders in Appendix A.

Implementation Details. In this part, we provide implementation

details of the experiments. For the five benchmark datasets, we

utilize a finetuned MobileNetV2 [31] to extract image features. The

images used to train the MobileNetV2 do not overlap with either

the offline or online datasets. The benchmark datasets’ images are

cropped and resized to 32 × 32.

For all the benchmark datasets in the generalized online label

shift scenario, we simulate four types of environmental change

patterns to encompass various non-stationary environments. For

each case, the current distribution at round 𝑡 is a mixture of two dif-

ferent stable distributions, i.e., 𝝁, 𝝁′ ∈ [0, 1]𝐾 with a time-varying

coefficient 𝛼𝑡 , i.e., 𝝁𝑡 = (1 − 𝛼𝑡 )𝝁 + 𝛼𝑡𝝁′, where 𝝁𝑡 denotes the
current distribution at round 𝑡 and 𝛼𝑡 controls the non-stationarity

and patterns. Specifically,

• Linear Shift: 𝛼𝑡 = 𝑡/𝑇 , simulating a linear change pattern.

• Square Shift:𝛼𝑡 switches between 0 and 1 following a quadratic

pattern 𝛼𝑡 =
√︁
𝑡/𝑇 .

• Bernoulli Shift: 𝛼𝑡 randomly switches between 1 and 0 fol-

lowing the pattern 𝛼𝑡 ∼ 𝑏 (𝛼), where 𝑏 is a binomial distribution

which returns 0 and 1 with the same probability 1/2.

• Sine Shift: 𝛼𝑡 = | sin(𝑡𝜋/𝐶) |, simulating a sinusoidal change

with a period of 𝐶 .

We repeat all experiments with the same five random seeds and

then evaluate the average error and the standard deviation.

Results on Benchmark Datasets. The comparison results on

benchmark datasets are reported in Table 1. These results demon-

strate that our proposed algorithm, Agoe, effectively adapts to the

GOLS problem, outperforming other contenders. The baseline FIX
is inferior to the other algorithms, highlighting the necessity of

updating the representation in the changing environments. Our

approach surpasses both continual learning methods (A-GEM and
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Figure 3: Results on real-world datasets. (a) & (b): The timely performances of average error rate on the iWildCam and Amazon datasets. (c) &

(d) The t-SNE visualization of the conditional distribution of the iWildCam dataset based on the representation function Φ𝑡 learned by Agoe at

round 𝑡 = 40 and 𝑡 = 80. The transparency indicates the timestamp of that cluster.

Table 2: Average error (%) of different algorithms on the real-world applications of iWildCam [4] and Amazon [26] datasets. The performance

metrics reported include both the mean accuracy and the standard deviation of different algorithms over a total of five separate runs. The best

are emphasized in bold.

Fix A-GEM HAL IWDAN SSL LAME ODC Agoe Skyline

iWildCam

Error (%)
46.51 22.20 18.36 33.50 33.54 45.02 18.67 18.16 8.81

± 0.000 ± 0.754 ± 0.893 ± 0.180 ± 0.213 ± 0.032 ± 0.718 ± 0.543 ± 0.000

Efficinecy (s/batch)
0.540 21.57 24.24 41.67 36.04 0.836 22.87 32.21

—± 0.032 ± 0.286 ± 0.690 ± 0.870 ± 0.382 ± 0.045 ± 0.397 ± 2.060

Energy (kJ/batch)
0.038 2.746 3.413 6.061 5.764 0.061 3.978 4.776

—± 0.003 ± 1.031 ± 1.219 ± 1.848 ± 1.602 ± 0.004 ± 1.208 ± 1.296

Amazon

Error (%)
32.47 29.41 29.26 32.39 32.41 32.40 29.26 28.82 6.53

± 0.000 ± 0.065 ± 0.051 ± 0.057 ± 0.054 ± 0.003 ± 0.050 ± 0.050 ± 0.000

Efficinecy (s/batch)
22.43 89.23 113.1 174.6 172.0 24.84 123.5 166.5

—± 0.376 ± 0.879 ± 0.360 ± 0.541 ± 0.820 ± 0.530 ± 0.432 ± 16.04

Energy (kJ/batch)
4.713 22.91 25.57 48.37 48.40 5.235 28.13 46.65

—± 1.908 ± 7.709 ± 5.860 ± 11.30 ± 10.03 ± 2.407 ± 6.391 ± 10.04

HAL) and the sequential representation learning method (ODC), in-
dicating that, compared with methods that handle the general case

of distribution shifts, our approach successfully mines the unique

structure of GOLS, thereby achieving better performance. Besides,

compared with IWDAN and SSL, which only utilize current unla-

beled data for representation learning, our approach incorporates

a novel learning objective and explores multi-resolution updates

for learning representation. Agoe also outperforms the test-time-

adaptation method LAME, demonstrating the necessity of updating

the representation in GOLS. Therefore, we validate that Agoe is

effective in handling the GOLS with various types of shifts. Notably,

in the Bernoulli and Sine shift scenarios with periodic changes,

our approach exhibits a more superior performance by leveraging

multi-resolution updates to capture the unique structure in the

generalized online label shift streams.

6.2 Real-world Applications

In this part, we aim to answerQ2 andQ3. We compare the proposed

approach with other contenders on two real-world applications:

(i) a computer vision task of wild animal recognition on the iWild-

Cam [4] dataset; and (ii) a natural language processing task of

sentiment analysis on the Amazon [26] dataset.

Implementation Details. For the iWildCam dataset, we utilize a

finetuned MobileNetV2 [31] to extract image features. The images

used to train the MobileNetV2 do not overlap with either the offline

or online datasets. The iWildCam dataset’s images 96 × 96.

Table 3: Ablation study of our Agoe. Penalty is the penalty term

in our optimization objective in 2. Ensemble represents the online

ensemble to exploit multi-resolution updates.

ID Penalty Ensemble iWildCam Amazon

(i) - - 20.13 ± 0.60 29.26 ± 0.05

(ii)

√
- 19.35 ± 0.51 29.11 ± 0.06

(iii) -

√
19.03 ± 0.45 28.97 ± 0.04

Agoe

√ √
18.16 ± 0.54 28.82 ± 0.05

For the Amazon dataset, we utilize a finetuned BERT-Mini [35] to

extract text features. The corpus used to train the BERT-Mini does

not overlap with either the offline or online datasets. The Amazon

dataset’s texts are trimmed and padded to a token length of 128.

Results on Real-world Datasets. To answer Q2, we report the

average error of various algorithms on the iWildCam and Amazon

datasets in Table 2, along with their timely performance illustrated

in Figures 3 (a) and (b). Our proposed approach exhibits better per-

formance compared to the continual learning methods (A-GEM and

HAL), demonstrating that our penalty and ensemble paradigm can

effectively handle the GOLS problem. The proposed method also

surpasses the sequential representation learning method (ODC)
that is designed for general distribution shift, indicating that our

approach successfully mines the special GOLS structure by the

multi-resolution updating strategy. Additionally, compared with

IWDAN and SSL, our approach incorporates a specially designed
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Table 4: Sensitivity analysis of the hyperparameter in Agoe. We

report the average error (%) of Agoewith different 𝜆 values on iWild-

Cam and Amazon datasets.

Dataset 𝜆 = 0.05 𝜆 = 0.10 𝜆 = 0.20 𝜆 = 1.00

iWildCam 18.53 ± 1.44 18.16 ± 0.54 18.50 ± 0.70 18.62 ± 1.39

Amazon 28.80 ± 0.03 28.82 ± 0.05 28.80 ± 0.04 28.81 ± 0.04

learning objective and explores different lengths of historical infor-

mation for better representation learning. Our Agoe also outper-

forms the test-time adaptation method LAME, which adjusts the

outputs of the model for adaptation, validating the importance of

updating the representation in the GOLS data streams. The Skyline,
which utilizes all the data to learn the representation, performs well,

indicating that the generalized online label shift assumption of an

invariant representation does hold in many real-world applications.

Effectiveness of Learning the Representation. To answer Q3,

we visualize the learned representation Φ𝑡 produced by our Agoe

at different rounds 𝑡 in Figure 3 (c) and (d). Using t-SNE [36], we

visualize Φ𝑡 (x) given certain labels at rounds 𝑡 = 40 and 𝑡 = 80.

The results demonstrate that by our designed objective with the

mask-based updating mechanism for leveraging multiple lengths of

historical data, Agoe accurately traces the invariant representation

Φ★ over time, therefore capturing the inherently stable information

from the non-stationary GOLS data stream, and can achieve a better

representation with the help of the multi-resolution updates.

Efficiency Comparison. We also compare the computational

efficiency of our approach with those of the other contenders. As

shown in Table 2, the test-time-adaptation method LAME is the

most efficient as it does not update the representation, but it does

not yield a good performance in our experiments. Though the

methods of IWDAN and SSL exhibit slower speed, they accomplish

superior performance. Our approach, albeit with a slight compro-

mise on computational cost, attains the best performance among

all. Additionally, we compare the energy consumption in Table 2,

calculating the energy needed for each method to process one batch

of data. Similarly, our approach achieves the best performance with

a slight compromise on the energy consumption.

Ablation Study. To validate each component’s contribution in

Agoe, we evaluate three variants: (i) removing both the penalty

term in Eq. (2) and online ensemble structure, (ii) removing only

the online ensemble structure for multi-resolution updating, and

(iii) keeping the mask-based online ensemble but removing the

penalty term. All variants use identical hyperparameters for fair

comparison. As shown in Table 3, the online ensemble structure

substantially improves performance through effective exploitation

of historical information via our mask-based updating mechanism.

The penalty term in Eq. (2) also proves essential, as removing it

degrades performance. These results validate that both components

are crucial for Agoe to achieve superior performance.

Sensitivity Analysis. We also conduct experiments to investigate

the sensitivity of the hyperparameter in our approach. In all the

experiments, we choose 𝜆 = 0.10 by default without any tuning. We
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(b) D(𝜙★ (x) | 𝑦) of iWildCam

Figure 4: (a) The conditional distribution of the raw features x given

the label 𝑦. (b) The conditional distribution of the optimal represen-

tation 𝜙★ (x) given the label 𝑦.

provide the sensitivity analysis to show that the value of 𝜆 will not

significantly affect the performance, as demonstrated in Table 4.

GOLS assumption vs. label shift assumption. Online label shift

(OLS) is a very good starting point to study online distribution

shift adaptation with provable guarantees. However, as mentioned

in Section 1, OLS assumes that D(x | 𝑦) is fixed across the time

horizon, which may not hold in many tasks. To this end, GOLS

problem is motivated by real-world applications. For example, for

vision and natural language processing tasks, if one directly uses

the raw feature x without extracting the representation, deploy-

ing OLS algorithms with such features will have an unfavorable

performance. In contrast, we use DNN models such as ResNet and

MobileNet to extract representations before classification. We have

included a figure comparing the D(x | 𝑦) and D(𝜙 (x) | 𝑦) for the
real-world iWildCam data, as illustrated in Figure 4. The results

indicate that the conditional distribution of raw features x given

the label 𝑦 is unstable across different timestamps, whereas the

conditional distribution of the representation 𝜙 (x) given the label 𝑦

remains stable. Therefore, Assumption 1 is essential and applicable

in many real-world applications.

7 Conclusion

In this paper, we investigate the problem of adapting to generalized
online label shift (GOLS), a generalized variant of traditional online

label shift, where the key is to learn an unknown invariant repre-
sentation such that the conditional distribution remains the same

across all the environments. To tackle the problem, we design a

novel objective for learning the underlying invariant representation,

and propose a new algorithm to optimize the objective, which lever-

ages online ensemble paradigm to perform multi-resolution updates
using various historical data windows, thereby enhancing the stabil-

ity of representation learning, which is theoretically guaranteed to

achieve the optimal convergence rate. We also introduce an efficient
mask-based implementation for ensembling with DNNs in practice.

Extensive experiments on benchmark and two real-world datasets,

including computer vision and natural language processing tasks,

further demonstrate the effectiveness of our proposal.
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A Contenders

In this section, we introduce the details of the contenders.

• FIX : The offline model is never updated in the online stage, serv-

ing as a baseline for other methods.

• HAL [7]: A continual learning method which maintains proto-

types in both the input space and the representation space to

regularize and stabilize online updates.

• A-GEM [8]: A continual learning method which projects the

gradient on the latest online batch to a direction that does not

conflict with the gradient on a batch sampled from observed data

to contain catastrophic forgetting.

• IWDAN [12]: An unsupervised domain adaptation (UDA)method

focusing on the generalized label shift problem. The representa-

tionmodel is forced to map the target domain data into the source

domain data’s feature space, so that the domain discriminator

cannot distinguish between the feature of the target domain data

and the feature of the source domain data.

• SSL [39]: A self-supervised learning (SSL) method designed for

online representation update under a GOLS setting similar to the

problem setting in our paper.

• LAME [6]: A test-time adaptation (TTA) method. The represen-

tation is kept to be fixed, and only adjust the prediction based on

online data. Specifically, LAME forces the posterior probabilities

of two online test points with similar representations to be closer.

• ODC [41]: A SSL method designed for sequential representation

update. The cluster identity of an online data point is regarded

as its pseudo label to update the representation and the classifier.

For a fair comparison, we additionally update ODC’s model with

a supervised cross-entropy loss.

• Skyline: Trained on all data including the offline data and the

online data, Skyline is assumed to have the optimal underlying

representation and classifier in hindsight.

B Proofs

This section provides the omitted proofs of Section 5.

B.1 Proof of Proposition 1

Proof. For any representation Φ ∈ R𝑛 , by taking the expecta-

tion, we have

E(x,𝑦)∼D𝑡
[�̂�𝑡 (Φ)] = E(x,𝑦)∼D𝑡

[
𝑅𝑡 (w𝑡 ◦ Φ)

+ 𝜆
2

∑︁
(x,𝑦) ∈𝑆𝑡

[∇w |w=w𝑡
ℓ (w ◦ 𝜑 (x;Φ), 𝑦)

2

2

] ]
=𝑅𝑡 (w𝑡 ◦ Φ) +

𝜆

2

E(x,𝑦)∼D𝑡

[∇w |w=w★
𝑡
ℓ (w ◦ 𝜑 (x;Φ), 𝑦)

2

2

]
= 𝐿𝑡 (Φ),

where in the second equality, we assume that the current classifier

can be accurately estimated by the representation function, the

offline data, and the current online data by Eq. (3). This holds if

the GOLS assumption in Assumption 1 is valid and if there is suffi-

cient data to estimate the representation and the label distribution.

Therefore, we finish the proof. □

B.2 Proof of Theorem 1

Proof. We first illustrate how to get the regret bound for any

interval [𝑖, 𝑗] ∈ IGC, and then extend to any interval [𝑠, 𝑒].

For any interval [𝑖, 𝑗] ∈ IGC, for the base learner EI ∈ A𝑡 that

runs on the interval I = [𝑖, 𝑗], we decompose the regret into two

parts: the meta regret and the base regret as following.

E
[
Reg[𝑖, 𝑗 ]

𝑇
({Δ𝑡 }𝑇𝑡=1

)
]
≜ E

[
𝑗∑︁
𝑡=𝑖

⟨g𝑡 ,Δ𝑡 ⟩
]
−

𝑗∑︁
𝑡=𝑖

⟨g𝑡 , u⟩

= E

[
𝑗∑︁
𝑡=𝑖

⟨g𝑡 ,Δ𝑡 ⟩ −
𝑗∑︁
𝑡=𝑖

⟨g𝑡 ,ΔI
𝑡 ⟩

]
︸                                  ︷︷                                  ︸

meta regret

+E
[
𝑗∑︁
𝑡=𝑖

⟨g𝑡 ,ΔI
𝑡 ⟩

]
−

𝑗∑︁
𝑡=𝑖

⟨g𝑡 , u⟩︸                                ︷︷                                ︸
base regret

.

(i) Base Regret. The base regret measures the gap between the

base model and the comparator. To further examine the base regret,

we decompose the base regret as

E𝑖:𝑗

[
𝑗∑︁
𝑡=𝑖

⟨g𝑡 − ĝ𝑡 ,Δ𝑡 − u⟩
]

︸                             ︷︷                             ︸
term (a)

+E𝑖:𝑗

[
𝑗∑︁
𝑡=𝑖

⟨̂g𝑡 ,Δ𝑡 − u⟩
]

︸                      ︷︷                      ︸
term (b)

,

where E𝑖:𝑗 [·] denotes the expectation taken over the random draw

of dataset {𝑆𝜏 } 𝑗𝜏=𝑖 , and ĝ𝑡 = ∇�̂�𝑡 (Δ𝑡 ). For term (a), we have

term (a) = E𝑖:𝑡−1

[
⟨g𝑡 − E𝑡 [ĝ𝑡 | 𝑖 : 𝑡 − 1],Δ𝑡 − u⟩

]
= 0,

where the last equality is due to the unbiasedness of the risk esti-

mator �̂�𝑡 as stated in Proposition 1, such that g𝑡 = E𝑡 [ĝ𝑡 | 𝑖 : 𝑡 − 1].
Thus, it is sufficient to analyze term (b) to provide an upper bound

for term (a). Without the loss of generality, we assume ∥ĝ𝑡 ∥ ≤ 1

and ∥g𝑡 ∥ ≤ 1 for all 𝑡 ∈ [𝑇 ], which can be achieved by scaling the

objective by a constant factor. We introduce the following lemma:

Lemma 1 (Corollary 5 in [27]). Let {ĝ𝑡 }∞𝑡=1
be any sequence of

gradient vectors such that ∥ĝ𝑡 ∥ ≤ 1, and the interval I = [𝑖, 𝑗]. Then,
the regret of the base learner EI update as Eq. (4) satisfies

𝑗∑︁
𝑡=𝑖

⟨̂g𝑡 ,ΔI
𝑡 − u⟩ ≤ ∥u∥

√︁
|I | ln(1 + 24|I |2∥u∥2) +

(
1 − 1√︁

𝜋 |I |

)
= Õ

(
∥u∥

√︁
|I |

)
,

where |I | = 𝑗 − 𝑖 + 1 is the length of the interval.

Combining upper bounds of term (a) and term (b) yields

E

[
𝑗∑︁
𝑡=𝑖

⟨g𝑡 ,ΔI
𝑡 ⟩

]
−

𝑗∑︁
𝑡=𝑖

⟨g𝑡 , u⟩ ≤ Õ
(
∥u∥

√︁
|I |

)
,

where 𝑂 (·) ignores the logarithmic factors in 𝑇 .

(ii) Meta Regret. For the meta regret, similarly, we decompose

meta regret into two parts.

E𝑖:𝑗

[
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𝑡=𝑖
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term (c)
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𝑡 ⟩

]
︸                        ︷︷                        ︸

term (d)

,

For term (c), we have

term (c) = E𝑖:𝑗
[
⟨g𝑡 − ĝ𝑡 ,Δ𝑡 − ΔI

𝑡 ⟩
]

= E𝑖:𝑡−1

[
⟨g𝑡 − E𝑡 [ĝ𝑡 | 𝑖 : 𝑡 − 1],Δ𝑡 − ΔI

𝑡 ⟩
]
= 0,
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where the last equality is due to the unbiasedness of the risk esti-

mator �̂�𝑡 as stated in Proposition 1, such that g𝑡 = E𝑡 [ĝ𝑡 | 𝑖 : 𝑡 − 1].
To upper bound the term (d), we introduce the following lemma.

Lemma 2 (Theorem 1 in [23]). Let {ĝ𝑡 }∞𝑡=1
be any sequence of

gradient vectors such that ∥ĝ𝑡 ∥ ≤ 1, then for any interval I = [𝑖, 𝑗] ∈
IGC, the meta algorithm that runs as AdaNormalHedge satisfies

𝑗∑︁
𝑡=𝑖

⟨̂g𝑡 ,Δ𝑡 ⟩ −
𝑗∑︁
𝑡=𝑖

⟨̂g𝑡 ,ΔI
𝑡 ⟩ ≤

√︁
3|I |𝑐 ( 𝑗) = 𝑂

(√︁
|I |

)
,

where 𝑐 ( 𝑗) ≤ 1+ ln 𝑗 + ln(1+ log
2
𝑗) + ln

5+3 ln(1+𝑗 )
2

is a logarithmic
factor, in which𝑚(𝑡) is the total number of base learners created up
to round 𝑡 , and we show that𝑚(𝑡) ≤ 𝑡 (1 + log

2
𝑡) in Lemma 3.

Thus, by combing the base regret and the meta regret, we can prove

the regret in the GC interval, i.e., for any interval I = [𝑖, 𝑗] ∈ IGC,

E

[
𝑗∑︁
𝑡=𝑖

⟨g𝑡 ,Δ𝑡 ⟩
]
−

𝑗∑︁
𝑡=𝑖

⟨g𝑡 , u⟩ = 𝑂
(
∥u∥

√︁
|I |

)
. (7)

(iii) Extend to Any Interval [𝑠, 𝑒] ⊆ N. In the above, we have

proved the regret in GC intervals [𝑖, 𝑗] ∈ IGC in Eq. (7). In this part,

we extend the strongly adaptive regret to any interval [𝑠, 𝑒] ⊆ N.
We first introduce the following lemma to describe the benign

property of the GC intervals.

Lemma 3 (Lemma 1.2 of [10]). For any interval [𝑠, 𝑒] ⊆ N, it
can be partitioned into two sequences of disjoint and consecutive
intervals, i.e., I−𝑝 , . . . , 𝐼0 ∈ IGC and I1, . . . ,I𝑞 ∈ IGC, such that
|I−𝑖 | /|I−𝑖+1 | ≤ 1/2,∀𝑖 ≥ 1 and |I𝑖 | /|I𝑖−1 | ≤ 1/2,∀𝑖 ≥ 2. Let𝑚(𝑡)
be the total number of base learners created up to round 𝑡 . Then,

𝑚(𝑡) ≤ 𝑡
(
1 + log

2
𝑡
)
,

because the active base learners in 𝑡-round is smaller than 1 + log
2
𝑡 .

Next, we extend the above strongly adaptive regret bound in

Eq. (7) to any interval I = [𝑠, 𝑒] ⊆ N by utilizing Lemma 3. We first

decompose the strongly adaptive regret over I = [𝑠, 𝑒] as
𝑒∑︁
𝑡=𝑠

⟨g𝑡 ,Δ𝑡 ⟩ −
𝑒∑︁
𝑡=𝑠

⟨g𝑡 , u⟩

=

0∑︁
𝑖=−𝑝

©«
∑︁
𝑡 ∈I𝑖

⟨g𝑡 ,Δ𝑡 ⟩ −
∑︁
𝑡 ∈I𝑖

⟨g𝑡 , u⟩ª®¬︸                                    ︷︷                                    ︸
term (e)

+
𝑞∑︁
𝑖=1

©«
∑︁
𝑡 ∈I𝑖

⟨g𝑡 ,Δ𝑡 ⟩ −
∑︁
𝑡 ∈I𝑖

⟨g𝑡 , u⟩ª®¬︸                                   ︷︷                                   ︸
term (f)

.

Then, we bound term (e) based on the adaptive regret in Eq. (7),

term (e) ≤
0∑︁

𝑖=−𝑝

(
∥u∥

√︁
|I | ln(1 + 24|I |2∥u∥2)

+
(
1 − 1√︁

𝜋 |I |

)
+

√︁
3|I |𝑐 (𝑒)

)
= Õ

(
∥u∥

√︁
|I |

)
,

Furthermore, the term (f) can be bounded in the same way. There-

fore, we have

𝑒∑︁
𝑡=𝑠

⟨g𝑡 ,Δ𝑡 ⟩ −
𝑒∑︁
𝑡=𝑠

⟨g𝑡 , u⟩ = Õ
(
∥u∥

√︁
|I |

)
.

Thus, we complete the proof of Theorem 1. □

B.3 Proof of Corollary 1

Proof. We first provide the definition of 𝛿-norm in Corollary 1.

Definition 2 (𝛿-norm). Given a point x, a number 𝛿 > 0 and a

almost-everywhere differentiable function 𝐹 , define

∥∇𝐹 (x)∥𝛿 ≜ inf

𝑆⊂𝐵 (x,𝛿 ), 1

|𝑆 |
∑

y∈𝑆 y=x

 1

|𝑆 |
∑︁
y∈𝑆

∇𝐹 (y)

 .
Then, we introduce some preliminaries of non-convex, non-

smooth optimization problems. To start with, Cutkosky et al. [9]

address non-convex, non-smooth optimization using a “restart”

mechanism. They divide the entire budget of gradient evaluations

into multiple intervals, with the inner-loop algorithm restarting at

each interval. Given the total number of evaluations as𝑇 , we define

the restart cycle (i.e., length of each interval) as 𝐶 , therefore, the

number of restarts is 𝐾 = ⌊𝑇 /𝐶⌋. We introduce following lemma.

Lemma 4 (Corollary 9 of Cutkosky et al. [9]). Suppose we
have a budget of 𝑇 gradient evaluations, the function 𝐿 is well-
behaved, E[∥g𝑡 ∥2] ≤ 𝐺2, ∥Δ𝑡 ∥ ≤ 𝐷 for some user-specified 𝐷 , and
that the inner-loop algorithm ensures the regret bound in every inter-
valI = [𝑘𝐶+1, 𝑘𝐶+𝐶],∀𝑘 ∈ [𝐾] to satisfy E[Reg[𝑠,𝑒 ]

𝑇
({Δ𝑡 }𝑇𝑡=1

)] ≤
𝐷𝐺𝐾

√︁
|I | for all ∥u𝑘 ∥ ≤ 𝐷 . Let 𝛿 > 0 be an arbitrary number. Set

𝐷 = 𝛿/𝐶,𝐶 = min(⌈(𝐺𝑇𝛿/𝛾)2/3⌉,𝑇 /2), and 𝐾 = ⌊𝑇 /𝐶⌋. Then,

E

[
1

𝐾

𝐾∑︁
𝑘=1

 1

𝐶

𝑘𝐶+𝐶∑︁
𝑡=𝑘𝐶+1

∇𝐿𝑡 (Φ𝑡 )

]
≤ 2𝛾

𝛿𝑇
+ max

(
5𝐺2/3𝛾1/3

(𝑇𝛿)1/3

,
6𝐺
√
𝑇

)
,

where 𝐿𝑡 (Φ) = ED𝑡∼Pall
[𝐿𝑡 (Φ)], and 𝛾 ≜ 𝐿𝑡 (Φ0) − 𝐿𝑡 (Φ★) is the

quality of the initial point.

To prove Corollary 1, we denote Φ̄𝑘 ≜ 1

𝐶

∑𝑘𝐶+𝐶
𝑡=𝑘𝐶+1

Φ𝑡 , thus we

haveE
[

1

𝐾

∑𝐾
𝑘=1

∇𝐿𝑡 (Φ̄𝑘 )
𝛿

]
≤ E

[
1

𝐾

∑𝐾
𝑘=1

 1

𝐶

∑𝑘𝐶+𝐶
𝑡=𝑘𝐶+1

∇𝐿𝑡 (Φ𝑡 )
] .

If we choose Φ̄𝑡 randomly and uniformly from the sequence {Φ̄𝑘 }𝐾
𝑘=1

,

E

[
1

𝑇

𝑇∑︁
𝑡=1

∇𝐿𝑡 (Φ̄𝑡 )𝛿 ] ≤ 2𝛾

𝛿𝑇
+ max

(
5𝐺2/3𝛾1/3

(𝑇𝛿)1/3

,
6𝐺
√
𝑇

)
.

Therefore, if one can access the quality of the initial point 𝛾 ≜
𝐿𝑡 (Φ0)−𝐿𝑡 (Φ★), using Lemma 4, taking a simple online gradient de-

scent [47] as the inner-loop algorithm can achieve the optimal rate

to find the stationary points in non-convex, non-smooth optimiza-

tion problems. However, in practice, it is challenging to estimate

the quality of the initial point in advance. Therefore, we need to

find a way to handle this challenge in a parameter-free manner, i.e.,

even do not know the quality of the initial point.

To tackle this problem, as shown in Theorem 1, our approach

enjoys the advantageous properties of being parameter-free and

strongly adaptive. This means that regardless of the values of restart

cycle 𝐶 and the diameter 𝐷 , our approach can handle these pa-

rameters by setting 𝐶 and 𝐷 to their optimal values only in the

analysis without actually knowing them, achieving the same regret

order as if these parameters were known beforehand. This is possi-

ble because our algorithm using the online ensemble paradigm is

parameter-free which can adapt to more complex problems where

parameters are unknown in advance, as detailed in Theorem 1.

Therefore, we complete the proof of Corollary 1. □
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