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ABSTRACT

In plenty of real-life tasks, strongly supervised information is hard

to obtain, such that there is not sufficient high-quality supervision

to make traditional learning approaches succeed. Therefore, weakly

supervised learning has drawn considerable attention recently. In

this paper, we consider the problem of learning from incomplete

and inaccurate supervision, where only a limited subset of training

data is labeled but potentially with noise. This setting is challenging

and of great importance but rarely studied in the literature. We no-

tice that in many applications, the limited labeled data are usually

with one-sided noise. For instance, considering the bug detection

task in the software system, the identified buggy codes are indeed

with defects whereas the codes that have been checked many times

or newly fixed may still have other flaws due to the complexity of

the system. We propose a novel method which is able to effectively

alleviate the negative influence of one-sided label noise with the

help of a vast number of unlabeled data. Excess risk analysis is pro-

vided as theoretical justifications on the usefulness of incomplete

and one-sided inaccurate supervision. We conduct experiments on

synthetic, benchmark datasets, and real-life tasks to validate the

effectiveness of the proposed approach.
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1 INTRODUCTION

Machine learning has achieved great success in many real-world

tasks, especially in supervised learning tasks. These successful
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techniques, such as deep learning [13], typically require a vast

number of training data with accurate labels. However, it is often

the case that such strong supervision is not easy to obtain due to

the high cost of the labeling process. Therefore, it is desired to

facilitate the learning system with the capability of learning from

weak supervision [33].

We consider the problem of learning from incomplete and in-

accurate supervision. Specifically, only a small subset of training

data is observed with labels while the others remain unlabeled.

Meanwhile, the given labels might be inaccurate. This setting is

crucial since it occurs in many real-world applications. For instance,

considering the annotation of medical images in the hospital, as

the number of doctors is limited, there exist amounts of medical

images without labels. Even for those labeled images, they can be

wrongly annotated due to fatigue or negligence. Similar situations

also occur in learning with biology data. Supervised information

of each molecule is not always correct due to limitations of the

equipment capability, and the number of labeled molecule is also

limited as the biological experiment is typically costly and can last

several days.

These two issues have been studied separately in the area of

Semi-Supervised Learning (SSL) [4, 34] and Noisy Label Learning

(NLL) [19, 20]. For incomplete supervision, SSL approaches leverage

unlabeled data and limited labeled data to construct the predictor.

However, when labeled data are inaccurate, these noisy labels can

seriously deceive the learning system. For inaccurate supervision,

NLL approaches manage to learn the predictor with respect to

the underlying noise-free distribution in order to resist the noise.

Nevertheless, they need sufficient labeled data and cannot utilize

numerous unlabeled data. Therefore, it is very much appreciated

for approaches which are able to handle the unlabeled and noisy

data simultaneously.

There lack relevant studies for the problem of learning with in-

complete and inaccurate supervision simultaneously, where there

are a vast number of unlabeled data and a limited number of poten-

tially noisy labeled data. This problem turns out quite challenging,

and it is non-trivial to combine advantages of SSL and NLL ap-

proaches to address this problem. For traditional noisy label learn-

ing approaches, on the one hand, labeled data are insufficient to

estimate the underlying noise-free distribution. On the other hand,

these approaches are not able to access label information from

unlabeled data, and thus cannot leverage the incomplete supervi-

sion to alleviate the label noise. For traditional semi-supervised

learning approaches, to handle a vast number of unlabeled data,

an underlying assumption is that supervision information should

be reliable. Otherwise, these noisy labels can significantly mislead

the learning system. For example, in graph-based SSL, if labeled

data are not trustworthy, the algorithm probably converges to an

arbitrary result.
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Given only the observed data, the problem of learning with in-

complete and inaccurate supervision is probably almost impossible

to solve, particularly when the limited labeled data are arbitrarily

corrupted. Fortunately, in many real-world applications, we can

have side information on the structure of the noise on the labeled

data. Specifically, apart from a vast number of unlabeled data, the

limited labeled data are with one-sided instance-dependent noise,

namely, only labels in one category may flip into the other cate-

gory with an unknown, instance-dependent noise rate while the

other category is clean. Such a circumstance is quite common in

real-life tasks. For instance, considering the bug detection task,

whose purpose is to find out buggy codes in the software system.

The codes reported with bug issues by the senior engineers are

surely buggy (clean label), nevertheless, even though some codes

might have been checked many times or fixed recently, they are

not definitely reliable and potentially with bugs (noisy label) due

to the complexity of the software system. Meanwhile, plenty of

newly submitted codes are not labeled since it is hard to check

them one-by-one entirely (unlabeled). Another example emerges

the primary screening of cancer in the community hospital. One is

believed to be healthy if s/he passed the screening examination. On

the contrary, when suspected with cancer, s/he will need further ex-

amination as equipment in the community hospital may be not that

accurate. Consequently, people who passed the careful screening

are deemed as healthy (clean label) whereas those who are detected

ill may not be a real patient (noisy label). Meanwhile, there remain

a large number of residents to be checked (unlabeled).

In this work, we propose a novel semi-supervised learningmethod,

leveraging the incomplete supervision to alleviate the negative ef-

fect of the one-sided inaccurate supervision, and thus step towards

learning with incomplete and inaccurate supervision simultane-

ously. The main idea is to rewrite the true risk of the underlying

noise-free distribution in the importance weighting form. Enlight-

ened by positive-unlabeled learning [21], we utilize the marginal

distribution extracted from the incomplete supervision (unlabeled

data) along with accurate labels to estimate the weights, and thus

construct the risk minimizer for Learning from Incomplete and

one-sided Inaccurate Supervision (LIoIS). Both theoretical justifi-

cations and empirical studies show the benefit of unlabeled data

and noisy labeled data, leading to the optimal convergence rate and

remarkable performance gain.

We summarize the main contributions of this paper as follows:

(1) We study the problem of learning from incomplete and struc-

tured inaccurate supervision simultaneously, which occurs

in many real-world applications but is rarely studied.

(2) We propose a novel learning method, which is able to alle-

viate the noisy labeled data with the help of unlabeled data.

We theoretically justify the effectiveness of unlabeled and

noisy data via the excess risk analysis.

(3) We conduct extensive empirical studies on both benchmark

datasets and real-world applications to show the superiority

and robustness of our proposed method.

In the following, we first briefly review related work in Section 2.

Then, preliminary is introduced in Section 3. Next, we propose our

method in Section 4, following with experimental results on both

synthetic and real-world benchmark datasets in Section 5. Finally,

we conclude the paper in Section 6.

2 RELATEDWORK

Starting from the work [1], many studies on inaccurate supervision

have been proposed in the theoretical community, for instance,

[2] studied the learnability of noise tolerant learning in finite VC-

dimension. Then, various practical approaches are proposed to re-

duce the effect caused by inaccurate supervision [8, 10]. Following

the line of noisy label learning, instance-independent noise has been

well studied [17, 20]. They provide guarantees for risk minimization

under random classification noise in the general setting of convex

surrogates. However, in practice, instance-dependent noise [11]

is closer to the practical situation, where label noise depends on

the intrinsic nature of instances. This setting is arguably more

complicated than the instance-independent label noise scenario.

Preliminary research [19] shows that the Bayes optimal classifiers

can be recovered from the noisy distribution under certain assump-

tions. However, noisy label learning mainly focuses on supervised

learning, how to deal with limited labeled data and large amounts

of unlabeled data has not yet been well studied.

Tomake use of incomplete supervision, semi-supervised learning

algorithms are proposed to utilize unlabeled data along with limited

labeled data to construct the predictor. Theoretical analysis shows

that, provided with a reasonable assumption on unlabeled data, like

the cluster assumption or the manifold assumption [3, 22], unla-

beled data can be used to regularize the hypothesis space and thus re-

duce the searching complexity. Plenty of practical approaches have

been proposed over the decades, e.g., graph-based methods [34],

S3VMs [4], and disagreement-based methods [32]. Some SSL ap-

proaches have been extended to deep learning [6, 24]. In traditional

SSL, supervision information should be accurate, which usually

does not hold in practice.

A different point of view in semi-supervised learning is formu-

lated as Positive-Unlabeled Learning (PU Learning) [9, 26]. Different

from using unlabeled data as the regularizer of hypothesis space,

PU learning assumes the unlabeled data essentially generated from

the same joint distribution as labeled data, but their labels cannot

be observed. To deal with the semi-supervised learning task, they

linearly combine PU and NU (Negative-Unlabeled) and give the-

oretical analysis [25]. Another recent work by [14] analyzes the

problem of biased negative data. In their formulation, negative data

only represent a small portion of the whole negative distribution.

Their work is closer to the dataset shift problem whose labeled

data generating from one (training) distribution while unlabeled

data from the other (test) distribution. Nevertheless, PU learning

requires sufficient positive data to simulate the effect of the negative

part along with unlabeled data, which cannot be satisfied under

incomplete supervision.

Note that disagreement-based SSL approaches exploit pseudo-

labels of unlabeled data [32], and to handle misleading pseudo-

labels, some strategies such as data editing [15] or one-sided noisy

label learning [31] have been incorporated. These can be seen as

early studies considering both incomplete supervision and inaccu-

rate supervision, though the inaccurate supervision was generated

during SSL learning procedure, rather than from the initial training
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data. Some recent studies about Safe-SSL [16] also have inherent

mechanisms to handle the label noise, though these mechanisms

are implicit. Later there are some other studies [12, 18, 30] which

tried to improve robustness of SSL but were mostly heuristic and

did not consider structural property.

3 PRELIMINARY

In this section, we first review some notations for learning from

complete and accurate supervision, namely, the conventional super-

vised learning. Then, we demonstrate the preliminary knowledge

for learning from incomplete but accurate supervision, namely, the

semi-supervised learning.

3.1 Learning from Complete and Accurate
Supervision

In this scenario, we observe the ground-truth accurate label for each

instance. Let D be the underlying true distribution from which all

data (x ,y) ∈ (X × Y) are independently and identically sampled,

whereX ⊂ Rd andY = {−1,+1}. Suppose that we havenP positive

data {xi ,+1}i=1, ...,nP and nN negative data{x j ,−1}j=1, ...,nN . Our
purpose is to learn a real-valued decision function д : Rd → R for

the binary classification.

Let � : R×Y → R+ be a non-negative Lipschitz-continuous loss
function, whose expected risk is,

R(д) = E(x,y)∼D[�(д(x),y)]
= θPEP [�(д(x),+1)] + θN EN [�(д(x),−1)] , (1)

where θP is the class-prior of positive label Pr[y = +1] and θN
is Pr[y = −1] with θP + θN = 1. Besides, EP and EN denote the

expectation over Pr[x |y = +1] and Pr[x |y = −1], respectively.
As only empirical data are available in practice, we use the em-

pirical risk to approximate the expected one,

R̂(д) = θP
nP

np∑
i=1

�(д(xi ),+1) + θN
nN

nN∑
j=1

�(д(x j ),−1). (2)

Suppose we are given a family of decision functions G, in which

the each function д : X → R. Among them, let д∗ denote the

optimal decision function, with д̂ as its empirical version,

д∗ = arg min
д∈G

R(д), д̂ = arg min
д∈G

R̂(д).

3.2 Learning from Incomplete but Accurate
Supervision

Then, we consider learning from incomplete but accurate supervi-

sion, where we can only observe part of the ground-truth accurate

labels for one category, and the rest remain unlabeled. Suppose

that we have nP positive data {xi ,+1}i=1, ...,nP and nU unlabeled

data{xk }k=1, ...,nU . Our purpose is still learning a real-valued deci-

sion function д : X → R for the binary classification.

However, negative data are not available in this scenario and thus

θN EN [�(д(x),−1)] in (1) cannot be directly estimated. Fortunately,

du Plessis et al. [9] show that an unbiased estimator of R(д) can
be constructed by only using accurate positive and unlabeled data.

Suppose the loss function � satisfies the symmetric condition,

�(д(x),+1) + �(д(x),−1) = 1. (3)

We first regard the unlabeled data as negative data,

EU [�(д(x),−1)] = θPEP [�(д(x),−1)] + θN EN [�(д(x),−1)]
= θP − θPEP [�(д(x),+1)] + θN EN [�(д(x),−1)] .

Let � be a non-negative Lipschitz-continuous loss function and

satisfy (3), then the expected risk can be rewritten as,

R(д) = 2θPEP [�(д(x),+1)] + EU [�(д(x),−1)] − θP . (4)

By approximating R(д) with empirical samples, we obtain,

R̂PU (д) = 2
θP
nP

np∑
i=1

�(д(xi ),+1) + 1

nU

nU∑
k=1

�(д(xk ),−1). (5)

For a given family of decision functions G, let д̂PU denote the

minimizer of empirical risk under such incomplete but accurate

supervision, that is,

д̂PU = arg min
д∈G

R̂PU (д).

4 THE PROPOSED APPROACH

In this section, we present our approach to leverage the incom-

plete supervision to help learning with inaccurate supervision, in

particular, the one-sided instance-dependent label noise.

We first present how to rewrite the risk for Learning with one-

sided Inaccurate Supervision (LoIS), in which weights σ+ and σ−
play crucial roles. Then, we propose to estimate these two weights

by incorporating the unlabeled data. Finally, we provide our LIoIS

method for Learning from Incomplete and one-sided Inaccurate

Supervision.

4.1 Learning from one-side Inaccurate
Supervision (LoIS)

In the setting of one-sided inaccurate supervision, without loss of

generality, we suppose the positive data are clean and negative data

are with instance-dependent label noise.

Notations and Settings. Suppose that we have n
P̃
clean posi-

tive data P̃ = {xi ,+1}i=1, ...,nP̃ 1 and nÑ noisy negative data Ñ =
{x j ,−1}j=1, ...,nÑ . For each data item x , we denote its true label as

y and the observed label as ŷ. Evidently, we have y = ŷ for clean

data, while it does not hold for noisy data. Meanwhile, let θ
P̃
be

the class-prior of positive label Pr[ŷ = +1] and θ
Ñ

be Pr[ŷ = −1]
with θ

P̃
+ θ

Ñ
= 1. As there are positive and noisy negative data

(the empirical P̃ and Ñ data) on hand, throughout the paper, we

assume the class-prior is known in advance. Actually, in practice it

can be estimated by the empirical positive and unlabeled data [23].

We assume that the noisy negative data have instance-dependent

label noise [11, 19]. Specifically, for any (underlying, real) positive

example x (whose true label y = +1), it is observed as a negative ex-
ample (ŷ = −1). We define this probability as the hardness, formally,

h : X → [0, 1], with,
h(x) = Pr[ŷ = −1|x ,y = +1],

1We use P̃ instead of P since there are some true positive data are not revealed, which
are observed as negative data.
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We also suppose observed positive data are always accurate,

which means for any x ∈ P̃

Pr[y = +1|x , ŷ = +1] = 1.

Rewrite the True Risk. When only one-sided accurate supervision

is available, if we simply treat all observed data as accurate ones

and directly adopt the risk in (1), both empirical and theoretical

performance will suffer from the noise heavily. To cope with the

inaccurate supervision, it is necessary to rewrite the true risk. In

the following, we propose the oIS risk for the one-sided Inaccurate

Supervision, and show that it is provably equal to the true risk.

Definition 1 (Risk for one-sided Inaccurate Supervision (oIS Risk)).

For any function д ∈ G, its oIS risk RoIS (д) is defined as,

RoIS (д) = θP̃EP̃ [σ+(x)�(д(x),+1)] + θÑ EÑ [σ−(x)�(д(x),−1)] ,
where σ+(x) and σ−(x) are defined as

σ+(x) = 1/Pr[ŷ = +1|x ,y = +1],
σ−(x) = Pr[y = −1|x , ŷ = −1], (6)

which are the weights for positive and negative data.

Theorem 1. The oIS risk equals to the true risk (the risk over the

true data distribution), that is,

RoIS (д) = R(д).
Proof. The true risk R(д) is the sum of θPEP [�(д(x),+1)] and

θN EN [�(д(x),−1)]. For the expectation over the margin distribu-

tion of negative data,

EN [�(д(x),−1)]

=

∫
�(д(x),−1) Pr[x |ŷ = −1]Pr[x |y = −1]

Pr[x |ŷ = −1] dx

=

∫
�(д(x),−1) Pr[x |ŷ = −1]Pr[ŷ = −1]

Pr[y = −1]σ−(x) dx

=
θ
Ñ

θN
E
Ñ
[σ−(x)�(д(x),−1)] .

The second equation holds due to the simple observation that

all the true negative data are essentially observed as negative, and

all observed positive data are indeed true positive.

Therefore, we have

Pr[x |y = −1]
Pr[x |ŷ = −1] =

Pr[ŷ = −1]
Pr[y = −1] ·

Pr[x ,y = −1]
Pr[x , ŷ = −1]

=
Pr[ŷ = −1]
Pr[y = −1] ·

Pr[x ,y = −1, ŷ = −1] +
=0︷���������������������︸︸���������������������︷

Pr[x ,y = −1, ŷ = +1]
Pr[x , ŷ = −1]

=
Pr[ŷ = −1]
Pr[y = −1]σ−(x).

A similar result can be obtained for the positive side by an anal-

ogous argument. This completes the proof of Theorem 1. �

Remark 1. Theorem 1 justifies the usefulness of noisy negative

data. Instead of discarding noisy data or regarding them as the

unlabeled data, a more efficient method should take the noisy neg-

ative data into consideration, since they can be used to recover the

underlying noise-free distribution, along with clean positive data.

As the underlying distribution of the positive and the noisy

negative data is not accessible, we approximate the risk by the

empirical oIS risk, defined as follows.

Definition 2 (Empirical Risk for one-sided Inaccurate Supervision

(Empirical oIS Risk)). For any function д ∈ G, its empirical oIS risk

R̂oIS (д) is defined as,

R̂oIS (д) =
θ
P̃

n
P̃

nP̃∑
i=1

σ+(xi )�(д(xi ),+1) +
θ
Ñ

n
Ñ

nÑ∑
j=1

σ−(x j )�(д(x j ),−1),

(7)

where the weights σ+(x) and σ−(x) are defined in (6).

Therefore, provided with one-sided inaccurate supervision, we

are able to learn the decision function according to the empirical

oIS risk minimization. Let д̂oIS be the minimizer of the empirical

oIS risk in the function family G, that is,
д̂oIS = arg min

д∈G
R̂oIS (д).

We have the following excess risk bound, showing that the risk

of д̂oIS converges to that of the optimal decision function in the

function family G.
Theorem 2 (Excess Risk of learning from oIS). Assume that

the loss function � : R × Y → R+ is non-negative and L-Lipschitz
continuous. Given that hardness h(x) ∈ [0,h], then, for any δ > 0,

with probability at least 1 − δ , we have

R(д̂oIS ) − R(д∗) ≤ 4θ
P̃
(1 − h)−1LRnP̃ (G)

+ 4θ
Ñ
LRnÑ (G) + 2θ

P̃

√
ln(4/δ )
2n

P̃

+ 2θ
Ñ

√
ln(4/δ )
2n

Ñ

,

whereRnP̃ (G) is Rademacher complexity of the function family G for

the sampling of size n
P̃
from p+ = Pr[x |ŷ = +1] and RnÑ (G) follows

a similar definition. Details will be provided in the longer version.

Remark 2. In Theorem 2, the uniform boundedness of hardness is

necessary, otherwise, the excess risk can be unbounded. When the

hardness h is very close to 1, there exist some instances whose true

labels are positive but are regarded as negative with probability

close to 1. As only P̃ instead of original set P is accessible, we cannot

recover the information of those extremely hard examples.

Remark 3. When it degenerates to the instance-independent label

noise setting, namely, there exists constant h = Pr[ŷ = −1|x ,y =
+1] = Pr[ŷ = −1|y = +1], our method recovers the importance

reweighting method proposed in [17]. Specifically, we can set the

noise rate ρ−1 = Pr[ŷ = +1|y = −1] defined in their method as 0

and ρ+1 = Pr[ŷ = −1|y = +1] = h.

4.2 Estimating σ+ and σ− by Incomplete
Supervision

The key point of learning from oIS is to estimate the weights σ+
and σ− defined in (6). A similar weighting strategy for inaccurate

supervision is also adopted in [17], but they can only deal with

instance-independent label noise and are not able to utilize the

unlabeled data, which is not desired particularly when the labeled

data are scarce. However, it becomes a severe issue when we only

have limited noisy labeled data on hand. Fortunately, with the help
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of unlabeled data, such estimation can be fulfilled. In this paragraph,

we consider estimating σ+/− from incomplete supervision.

As shown in [21], positive-unlabeled learning is provably better

than supervised learning in terms of risk bounds when infinite

unlabeled data are available. Therefore, with sufficient unlabeled

data on hand, the classifier learned from positive and unlabeled

data also has a good capability in estimating the underlying noise-

free distribution. Consequently, we employ д̂PU , the minimizer

of empirical PU risk (5), to produce pseudo labels for the noisy

negative data and unlabeled data, which are then used to estimate

the weights σ+/−.

Estimate weights σ+/−. We adopt ratio matching method pro-

posed in [27] to estimate weights, and we only present the esti-

mation of σ+(x), while the estimator for σ−(x) can be similarly

obtained. Firstly, we rewrite σ+(x) as

σ+(x) =
Pr[x ,y = +1]
Pr[x , ŷ = +1] =

θP Pr[x |y = +1]
θ
P̃
Pr[x |ŷ = +1] =

θP
θ
P̃

σ+r (x),

where θP and θ
P̃
are class-prior and σ+r (x) denotes the remaining

density ratio term. Based on the law of large numbers, θP and θ
P̃

can be estimated by the ratio of the number of samples as

θ̂P =
nyPU =+1

n
P̃
+ n

Ñ

, θ̂
P̃
=

nŷ=+1

n
P̃
+ n

Ñ

,

in which nyPU =+1 and nŷ=+1 denote the number of positive data

estimated by д̂PU and the number of original observed positive

data, respectively.

Then, we proceed to estimate σ+r (x) by ratio matching method.

Let PPU = {xi , д̂PU (xi ) = +1}i=1, ...,m be the set of instances

which are labeled as +1 by д̂PU of sizem in training data, which

approximates the instances sampled from Pr[x |y = 1]. As P̃ is

directly sampled from Pr[x |ŷ = 1], we can empirically approximate

the discrepancy between estimated ratio and the true ratio by the

Bregman divergence, defined as follows.

Definition 3 (Bregman divergence of ratio models [27]). For any

differentiable and strictly convex function f : R → R, let ∇f (x)
denote the subgradient of f (x). The Bregman divergence associated

with f from the true density ratio σ+r to the estimated density ratio

σ̂+r is defined as,

Bf (σ+r | |σ̂+r ) =
∫

Pr[x |ŷ = +1]∇f (σ̂+r (x))σ̂+r (x) dx

−
∫

Pr[x |ŷ = +1]f (σ̂+r (x)) dx −
∫

Pr[x |y = +1]∇f (σ̂+r (x)) dx .

Thus, the empirical version B̂f (σ+r | |σ̂+r ) is defined as,

B̂f (σ+r | |σ̂+r ) =
1

n
P̃

n
P̃∑

i=1

∇f (σ̂+r (xi ))σ̂+r (xi ) −
1

n
P̃

n
P̃∑

i=1

f (σ̂+r (xi ))

− 1

m

m∑
j=1

∇f (σ̂+r (x j )).
(8)

Therefore, provided with the set of sampled instances, namely P̃ and

PPU , we are able to estimate the true density ratio by minimizing

the empirical Bregman divergence. Let σ̂∗
+r

be the minimizer of the

empirical Bregman divergence in function family {σ̂+r }, that is,
σ̂ ∗
+r
= arg min

σ̂+r ∈{σ̂+r }
B̂f (σ+r | |σ̂+r ).

For the density ratio estimated by the empirical Bregman diver-

gence minimization, we have the following bound, showing that

the estimated ratio σ̂∗
+r

converges to the optimal density ratio in

the function family {σ̂+r }.
Theorem 3. Assuming σ+r (x) is bounded, and function family

{σ̂+r } contains σ+r . For any δ > 0, with probability at least 1 − δ

Bf (σ+r | |σ̂ ∗
+r
) ≤ 2CR({σ̂+r }) + b

√
log(4/δ )
2n

P̃

,

where R({σ̂+r }) is the Rademacher complexity of ratio model set, in

the order of O(1/√n
P̃
). Meanwhile, C and b are constants. Detailed

proofs will be presented in the longer version.

Theorem 3 guarantees that our estimated weight converges the

optimal one in the hypothesis space, in the order of O(1/√n
P̃
),

which enjoys a radical dependence of the number of instances.

The analysis accords to the intuition as the estimator will be more

accurate with more positive data available.

4.3 Learning from Incomplete and one-sided
Inaccurate Supervision (LIoIS)

In order to learn from incomplete and one-sided inaccurate super-

vision, we propose to minimize the LIoIS risk, which is essentially

a weighted combination of oIS risk and PU risk,

RLIoIS (д) = (1 − γ )RoIS (д) + γRPU (д)
= (1 − γ ) {θ

P̃
E
P̃
[σ+(x)�(д(x),+1)] + θÑ EÑ [σ−(x)�(д(x),−1)]

}
+ γ {2θPEP [�(д(x),+1)] + EU [�(д(x),−1)]} ,

where γ ∈ [0, 1] is the trade-off coefficient. As the classifier д̂PU is

required to provide pseudo-labels for negative and unlabeled data,

we split the positive data P̃ into two disjoint parts P̃1 and P̃2 of size
n
P̃1

and n
P̃2
, which are respectively adopted in the (empirical) oIS

and PU risk,

R̂LIoIS (д) = γ
⎧⎪⎪⎨⎪⎪⎩
2θ̂P

n
P̃2

n
P̃2∑
i=1

�(д(xi ), +1) + 1

nU

nU∑
k=1

�(д(xk ), −1)
⎫⎪⎪⎬⎪⎪⎭

(1 − γ )
⎧⎪⎪⎨⎪⎪⎩
θ̂
P̃

n
P̃1

n
P̃1∑
i=1

σ+(xi )�(д(xi ), +1) +
1 − θ̂

P̃

n
Ñ

n
Ñ∑

j=1

σ−(x j )�(д(x j ), −1)
⎫⎪⎪⎬⎪⎪⎭ .

(9)

Therefore, we can learn д̂LIoIS , the minimizer of the weighted

combination risk in the function family G,
д̂LIoIS = arg min

д∈G
R̂LIoIS (д).

For the learned decision function, we have the following excess

risk bound, showing that the risk of д̂LIoIS converges to that of

optimal decision function in G.
Theorem 4 (Excess Risk of LIoIS). Assume that the loss function

� : R×Y → R+ is bounded, non-negative and L-Lipschitz continuous.
Suppose the hardness h(x) ≤ h holds uniformly for each instance,
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and there is a constant CG > 0 such that Rn (G) ≤ CG/
√
n for

positive/noisy negative and unlabeled data (with n = n
P̃
/n

Ñ
/nU ).

Then for any δ > 0, with probability at least 1 − δ , we have

R(д̂LIoIS ) − R(д∗) = O(1/√n
P̃
+ 1/√n

Ñ
+ 1/√nU ).

Remark 4. Theorem 4 implies the usefulness of leveraging unla-

beled data to alleviate label noise. As we can see, the risk bound

is tighter with the number of unlabeled data increasing. Note that

the risk bound is in optimal convergence rate (radical dependence)

without any additional assumption [29].

5 EXPERIMENT

In this section, we examine the performance of the proposed LIoIS

algorithm with applications on benchmark datasets and real-world

tasks. Specifically, we evaluate our LIoIS algorithm in the following

three aspects:

(i) Comparisons on the synthetic dataset: we provide intu-

itive illustrations on the advantage of our approach against

traditional algorithms designed for only incomplete or only

inaccurate supervision;

(ii) Comparisons on benchmark datasets: we compare LI-

oIS with robust SSL algorithms in benchmark datasets, to

demonstrate the superiority of LIoIS in handling incomplete

and structured inaccurate supervision.

(iii) Bug Detection Task: we validate the effectiveness of the

proposed approach on the bug detection task, which aims at

detecting defects in software systems.

For all the experiments, we randomly choose 50 positive and 50

negative examples as labeled data and set the rest as unlabeled. For

benchmark datasets, we train an SVM and then flip 20% positive data

into negative according to their confidence to simulate the instance-

dependent label noise. We adopt Gaussian kernel and perform

experiments 10 times on various splits of datasets, and present the

average and standard deviation of the results. We conduct 10-fold

cross validation to choose a proper trade off coefficient γ in LIoIS.

5.1 Comparisons on the synthetic dataset

We first numerically illustrate the performance of LIoIS under in-

complete and structured inaccurate supervision. We generate a

synthetic dataset from two class-conditional distributions, with

each data item (x ,y) generated from standard two-dimensional

Normal distribution Nx according to

Pr[x |y = −1] = Nx ([−1,−1]), Pr[x |y = 1] = Nx ([1, 1]).

Apart from the noisy labels generation mentioned above, we

provide 800 unlabeled data as incomplete supervision. The optimal

boundary is shown in red solid line. Inaccurate Supervision algo-

rithms (InaS) denote methods learning only with noisy labeled data

and here we apply robust SVM [7]. Similarly, Incomplete Supervi-

sion algorithms (IncS) denote methods learning with unlabeled data,

and we use PNU [25] for illustration. As shown in Figure 1, they

both suffer from the structured inaccurate labels. The orange solid

line denotes the boundary learned by LIoIS algorithm (9), which is

closest to the optimal boundary. To conclude, our proposed LIoIS

can empirically approximate the optimal boundary.

Figure 1: Decision boundaries of InaS, IncS and LIoIS.

Table 1: Brief statistics of benchmark datasets

Dataset # instance # dim Dataset # instance # dim

house 232 16 australian 690 42

ionosphere 351 33 diabetes 768 8

clean1 476 166 german 1000 59

wdbc 569 14 letter7vs9 1528 16

isolet 600 51 a5a 6414 122

breastw 683 9 mnist7vs9 14251 600

5.2 Comparisons on benchmark datasets

We examine the performance of LIoIS algorithm on benchmark

datasets, whose brief statistics are shown in Table 1. We compare

LIoIS with seven methods, including two supervised learning base-

lines and five semi-supervised learning algorithms. The two super-

vised learning baselines are:

• LIBSVM [5] is an SVM baseline.

• IW [17] is a supervised method to alternate noise by utilizing

importance reweighting.

There are other four robust semi-supervised learning algorithms,

which take the noisy nature into consideration in SSL,

• S4VM [16] uses SVMs on labeled data to train a baseline and

force final result not worse than supervised baseline.

• LSSC [18] is an SSL method based on sparse coding. It gives

a L1-norm formulation of Laplacian regularization based on

the manifold structure of the data.

• ROSSEL [30] uses a set of weak annotators learned from

noisy labeled data to generate pseudo labels for unlabeled

data, and combines them to approximate the ground-truth

labels by multiple label kernel learning.

• SIIS [12] is a graph based SSL algorithm. It emphasizes the

leading eigenvectors of the Laplacian matrix associated with

small eigenvalues to construct a robust graph and propagates

labels on this robust graph.

We also perform a direct combination of the semi-supervised learn-

ing algorithm and noisy label learning algorithm,

• PUIW is a direct combination of PU learning and IW. We

use PU learning to generate pseudo labels for unlabeled data,

and then apply IW on labeled data.

From the results in Table 2, LIoIS ranks first in 9 out of 12

datasets in terms of the average accuracy. Overall, our proposed
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Table 2: Performance comparisons on benchmark datasets. On each dataset, 10 test runs were conducted and the average accuracy as well

as standard deviation are presented, and the best one is emphasized in bold. Besides, • indicates that LIoIS is significantly better than the

compared method (paired t-tests at 95% significance level) and – indicates numerical limits or errors.

Dataset LIBSVM IW S4VM LSSC ROSSEL SIIS PUIW LIoIS (ours)

house 91.90 ± 1.72 • 96.29 ± 1.27 93.33 ± 1.37 • 93.49 ± 2.17 • 93.26 ± 1.88 • 88.84 ± 2.70 • 94.53 ± 2.80 96.03 ± 0.97

ionosphere 81.54 ± 3.19 • 83.28 ± 6.51 79.34 ± 7.07 • 79.26 ± 6.88 • 88.23 ± 4.64 72.11 ± 16.6 • 85.69 ± 2.56 90.23 ± 7.43

clean1 72.84 ± 3.81 • 64.52 ± 4.15 • 78.01 ± 3.62 • 61.03 ± 1.00 • 77.40 ± 2.37 • 60.89 ± 5.98 • 71.07 ± 3.92 • 86.16 ± 3.42

wdbc 89.65 ± 2.75 • 77.47 ± 19.3 • 80.76 ± 7.28 • 91.97 ± 2.01 • 90.87 ± 2.07 • 92.95 ± 1.32 • 77.64 ± 12.1 • 95.52 ± 1.08

isolet 86.50 ± 2.16 • 91.63 ± 2.44 • 87.34 ± 2.99 • 96.48 ± 1.25 • 80.13 ± 2.06 • 98.82 ± 0.48 91.74 ± 2.38 • 98.61 ± 1.21

breastw 93.65 ± 1.98 94.71 ± 1.23 91.54 ± 1.69 96.21 ± 1.29 96.53 ± 0.83 96.49 ± 0.68 95.53 ± 1.52 94.85 ± 4.32

australian 80.20 ± 3.24 • 80.65 ± 12.9 82.81 ± 3.19 • 81.87 ± 2.81 • 79.89 ± 6.92 • 72.96 ± 3.50 • 84.47 ± 3.90 86.19 ± 1.05

diabetes 74.91 ± 1.50 • 60.79 ± 14.1 • 69.69 ± 3.71 • 68.45 ± 2.35 • 75.69 ± 2.48 67.92 ± 1.37 • 75.93 ± 2.35 76.26 ± 1.03

german 64.52 ± 3.89 • 67.45 ± 4.81 • 65.81 ± 2.30 • 62.53 ± 1.86 • 73.03 ± 0.96 72.24 ± 1.19 68.65 ± 2.21 • 74.37 ± 2.58

letter7vs9 90.04 ± 3.88 • 95.21 ± 1.72 • 92.45 ± 4.65 • 94.23 ± 0.88 • 94.94 ± 1.43 • 78.47 ± 1.39 • 95.04 ± 1.34 • 98.82 ± 0.95

a5a 70.91 ± 2.42 • 73.82 ± 4.35 • 72.29 ± 2.71 • 68.45 ± 1.69 • 79.36 ± 1.66 • 76.36 ± 0.82 • 74.13 ± 2.47 • 83.29 ± 0.47

mnist7vs9 85.63 ± 2.29 • 90.18 ± 1.62 • 86.69 ± 1.43 • 88.76 ± 1.43 • 81.41 ± 1.18 • 0 – 0 ± 0 – 91.82 ± 1.53 • 96.19 ± 0.33

LIoIS w/ t/ l 11/ 1/ 0 10/ 1/ 1 12/ 0/ 0 10/ 1/ 1 9/ 2/ 1 9/ 1/ 2 8/ 3/ 1 rank first 9/ 12

Figure 2: Performance comparisons on benchmark datasets.

(a) isolet (b) letter7vs9

Figure 3: Performance curve (in accuracy) of proposed

approachwith an increasing noise rate of negative data.

LIoIS method outperforms both supervised baselines and robust

SSL algorithms. For supervised learning methods, notice that IW

is not always better than LIBSVM baseline, and the large variance

even makes the performance worse, which indicates the instabil-

ity caused by limited noisy labeled data. While compared with

the traditional noisy label learning methods (LIBSVM and IW),

LIoIS achieves higher accuracy and better stability, showing the

usefulness of unlabeled data. For robust semi-supervised learning

algorithms, LIoIS achieves a very promising performance over the

other four methods, as the prior knowledge of noise structure is

provided. Particularly, LIoIS outperforms S4VM and ROSSEL, which

heavily depend on the performance of weak learner(s) generated

from noisy labeled data, which also shows the usefulness of unla-

beled data. For the naive combination of PU and IW, LIoIS attains

higher accuracy than PUIW over almost all datasets, which means

a direct combination of IncS and InaS is not proper for incomplete

and inaccurate supervision.
Comparison with Incomplete Supervision algorithms. We compare

LIoIS with incomplete supervision algorithms. As noisy labeled

data are structured, which only appear in one category, positive-

unlabeled learning can be directly applied by discarding the noisy

data. We denote them as PU (w/o nN) and PU (nN as U), which drops

the noisy labeled data or considers them as unlabeled, respectively.

We also list the performance of PNU [25] and S4VM [16], in which

both of them regard the noisy labels as true ones.

We report the mean accuracy on six datasets in Figure 2. Among

these five algorithms, LIoIS achieves the highest accuracy. Notice

that PNU and S4VM are comparable or more accurate than two

kinds of PU algorithms, although they directly treat the noisy labels

as the correct ones. This indicates that it is necessary to consider the

noisy negative data when only limited positive data are provided.

Comparison with Inaccurate Supervision algorithms. We compare

LIoIS with inaccurate supervision algorithms which are directly

applied on noisy labeled data. Figure 3 reports the mean accuracy

and standard deviation of LIoIS, PUIW, and IW with increasing

noise rate. In general, LIoIS achieves the highest accuracy and drops

more slowly than PUIW and IW, as the proposed LIoIS algorithm

considers the instance-dependent label noise. Additionally, LIoIS is

always more accurate and stable than IW under fixed noise rate,

indicating the robustness of our proposed approach and usefulness

of unlabeled data on alleviating label noise particularly when the

number labeled data is limited.

5.3 Bug Detection Task

We examine LIoIS on the bug detection task, where the main pur-

pose is to predict whether source code is clean or potentially buggy.

Apart from those surely buggy codes reported by the senior en-

gineers, the codes checked many times or newly fixed can also
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(a) OrientDB (File) (b) OrientDB (class) (c) Elasticsearch (File) (d) Elasticsearch (class)

Figure 4: Performance curve w.r.t. an increasing number of detected bugs. The performance is measured by the number of true positive top

k bugs, |(S@k ) ∩ B |. The superior the algorithm is, the larger the quantity |(S@k ) ∩ B | will be.

(a) OrientDB (b) Elasticsearch

Figure 5: Potential bugs detected by LIoIS in OrientDB and Elasticsearch datasets.

have potential bugs. Moreover, a number of source codes are unla-

beled. This accords to the setting of learning from incomplete and

one-sided inaccurate supervision.

Since the codes in the project are usually modified by the engi-

neers, to identify the positive and negative data in the bug detection

task, we list the following three versions of each code file according

to whether it has relative issues committed:

(a) version before the issue is committed;

(b) version after the issue is reported but not yet fixed;

(c) version after the issue is fixed and closed.

After detecting relations between codes and issues, we treat

different versions of code files as instances. Specifically, we mark

a code file in version (a) and (b) as two buggy instances (positive),

while treat code file in version (c) as a clean instance (negative).

Meanwhile, other source codes in the original version which are

unrelated to any issue are marked as the clean instances (negative).

Experiment Settings. We choose two public bug detection datasets

of Java projects from GitHub [28]: (i) OrientDB2 and (ii) Elastic-

search3, where the former one is a database engine project and the

latter one is a search engine project. We choose version 2013.12.10

for OrientDB and version 2014.02.03 for Elasticsearch. For each

dataset, the feature of each instance is extracted either from the

whole code file or from the class, and thus there are four datasets

in total. Details of these two datasets are listed in Table 3.

We directly perform LIoIS algorithm on these two bug detection

datasets. To simulate the incomplete supervision, we randomly

2https://github.com/orientechnologies/orientdb
3https://github.com/elasticsearch/elasticsearch

Table 3: Descriptions of datasets for the bug detection task.

Name Positive (Buggy) Negative (Clean) Total # Dim

OrientDB (File) 270 1233 1503 7

OrientDB (Class) 208 1567 1847 102

Elasticsearch (File) 487 2548 3035 7

Elasticsearch (Class) 678 5230 5908 102

take 50 buggy instances and 50 clean ones, and set the rest code

instances as unlabeled. Notably, we choose the newly fixed version

of code or code checked many times as clean training instances.

For all experiments, we perform them 10 times on various splits of

the labeled, unlabeled, and test sets. To measure the performance

of algorithms, we use the number of detected true positive bugs

to characterize the effectiveness, namely, bugs identified by the

algorithm are indeed buggy. More specifically, we denote the set of

top k bugs detected for dataset S by algorithms as S@k , and the set

of underlying ground-truth bugs in the test set asB. Then we define

the number of detected true positive top k bugs as |(S@k) ∩ B|,
evidently, the better the performance of the algorithm is, the larger

the quantity |(S@k) ∩ B| will be.
Result Analyses. We first report the average and standard devia-

tion of the number of detected bugs on four bug datasets in Figure 4.

To better present the results, we only choose LSSC and SIIS as com-

parative methods, as they are the most competitive and outperform

other baselines in benchmark datasets. Figure 4 shows that our

approach LIoIS has a promising performance compared to the other

two comparative methods, especially on the Elasticsearch dataset,

see Figure 4(c) and 4(d). Meanwhile, SIIS shows a comparable result
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in OrientDB dataset but behaves poorly in Elasticsearch. The rea-

son is that SIIS is not suitable for the relatively large datasets (like

Elasticsearch), as it requires to perform the singular value decom-

position on the Laplacian matrix, which is in the cubic dependence

of the size of the training set. Therefore, these phenomena validate

the effectiveness of our proposed LIoIS, which not only achieves

promising results in benchmark datasets but also succeeds in the

real-world application on the bug detection task.

Furthermore, Figure 5 reports two potentially buggy codes in

current version detected by LIoIS in OrientDB and Elasticsearch

datasets. Take results in OrientDB as an example. As highlighted

in the blue frame, this code file was fixed and labeled as clean in

the version (Oct 2, 2013). However, the code file is scored high

by our approach LIoIS, which is suspected to be buggy with high

probability. After checking their later commit records, highlighted

in the orange frame, we find that the code file is indeed buggy and

fixed after three months, although the bugs are not detected in

the 2013 version. This strongly supports the effectiveness of our

proposed approach.

6 CONCLUSION

In this paper, we study the problem of learning from incomplete

and inaccurate supervision, which accommodates many real-world

applications. We observe that the label noise usually occurs in a

one-side manner, and thus are able to utilize the one-sided accurate

label and sufficient unlabeled data to alleviate the noisy labeled data

via the importance weighting technique. The proposed approach

is with nice theoretical guarantees, justifying the usefulness of

unlabeled data in defensing instance-dependent label noise. We

conduct extensive experiments on benchmark datasets as well as the

bug detection task, showing the superiority and robustness of our

proposed method compared with contenders from other categories:

semi-supervised learning, noisy label learning, and robust semi-

supervised learning.

In the future, it is desired to design the approach that can deal

with the circumstance that random instance-dependent label noise

occurs in both positive and negative data.
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